您好,欢迎来到维库电子市场网 登录 | 免费注册

基站天线
阅读:17786时间:2011-05-23 16:04:19

  基站天线是移动通信系统的重要组成部分,直接关系到移动通信网络的覆盖范围和服务质量。表征天线性能的主要参数有方向图、增益、输入阻抗、驻波比和极化方式等。天线使用环境大致分为五种类型:城区、密集城区、郊区、农村地区、交通干线等。  基站天线。

种类

  1 电调天线

  所谓电调天线,即指使用电子调整下倾角度的移动天线。电子下倾的原理是通过改变共线阵天线振子的相位,改变垂直分量和水平分量的幅值大小,改变合成分量场强强度,从而使天线的垂直方向性图下倾。由于天线各方向的场强强度同时增大和减小,保证在改变倾角后天线方向图变化不大,使主瓣方向覆盖距离缩短,同时又使整个方向性图在服务小区扇区内减小覆盖面积但又不产生干扰。实践证明,电调天线下倾角度在1°-5°变化时,其天线方向图与机械天线的大致相同;当下倾角度在5°-10°变化时,其天线方向图较机械天线的稍有改善;当下倾角度在10°-15°变化时,其天线方向图较机械天线的变化较大;当机械天线下倾15°后,其天线方向图较机械天线的明显不同,这时天线方向图形状改变不大,主瓣方向覆盖距离明显缩短,整个天线方向图都在本基站扇区内,增加下倾角度,可以使扇区覆盖面积缩小,但不产生干扰,这样的方向图是我们需要的,因此采用电调天线能够降低呼损,减小干扰。另外,电调天线允许系统在不停机的情况下对垂直方向性图下倾角进行调整,实时监测调整的效果,调整倾角的步进精度也较高(为0.1°),因此可以对网络实现精细调整;电调天线的三阶互调指标为-150dBc,较机械天线相差30dBc,有利于消除邻频干扰和杂散干扰。

  2 双极化天线

  双极化天线是一种新型天线技术,组合了+45°和-45°两副极化方向相互正交的天线并同时工作在收发双工模式下,因此其最突出的优点是节省单个定向基站的天线数量;一般GSM数字移动通信网的定向基站(三扇区)要使用9根天线,每个扇形使用3根天线(空间分集,一发两收),如果使用双极化天线,每个扇形只需要1根天线;同时由于在双极化天线中,±45°的极化正交性可以保证+45°和-45°两副天线之间的隔离度满足互调对天线间隔离度的要求(≥30dB),因此双极化天线之间的空间间隔仅需20-30cm;另外,双极化天线具有电调天线的优点,在移动通信网中使用双极化天线同电调天线一样,可以降低呼损,减小干扰,提高全网的服务质量。如果使用双极化天线,由于双极化天线对架设安装要求不高,不需要征地建塔,只需要架一根直径20cm的铁柱,将双极化天线按相应覆盖方向固定在铁柱上即可,从而节省基建投资,同时使基站布局更加合理,基站站址的选定更加容易。对于天线的选择,我们应根据自己移动网的覆盖,话务量,干扰和网络服务质量等实际情况,选择适合本地区移动网络需要的移动天线:

  --- 在基站密集的高话务地区,应该尽量采用双极化天线和电调天线;

  --- 在边、郊等话务量不高,基站不密集地区和只要求覆盖的地区,可以使用传统的机械天线。我国目前的移动通信网在高话务密度区的呼损较高,干扰较大,其中一个重要原因是机械天线下倾角度过大,天线下倾角度过大,天线方向图严重变形。要解决高话务区的容量不足,必须缩短站距,加大天线下倾角度,但是使用机械天线,下倾角度大于5°时,天线方向图就开始变形,超过10°时,天线方向图严重变形,因此采用机械天线,很难解决用户高密度区呼损高、干扰大的问题。因此建议在高话务密度区采用电调天线或双极化天线替换机械天线,替换下来的机械天线可以安装在农村,郊区等话务密度低的地区。

设置

  基站天线设置需要重点考虑下倾角、方向角、天线挂高、天线分集距离和隔离距离等参数。 基站天线(12张)

  1、下倾角设置 合理设置天线下倾角不但可以降低同频干扰的影响,有效控制基站的覆盖范围和整网的软切换比例(对CDMA网络而言),而且可以加强本基站覆盖区内的信号强度。通常天线下倾角的设定有两方面侧重,即侧重于干扰抑制和侧重于加强覆盖。这两方面侧重分别对应不同的下倾角算法。一般而言,对基站分布密集的地区应侧重于考虑干扰抑制,而基站分布较稀疏的地区则侧重于考虑加强覆盖。

  1.1 考虑干扰抑制时的下倾角 在基站天线半功率角范围内,天线增益下降缓慢,超过半功率角后,天线增益(尤其是上波瓣)衰减很快。因此从控制干扰的角度考虑,可认为半功率角的延长线到地面的交点(B点)为该基站的实际覆盖边缘。在基站周围环境理想情况下,下倾角可按以下公式计算。 α=actan(H/R)+β/2 公式一 公式一含义如下图所示。 下倾角计算示意图1 图中α为天线的下倾角,H为天线有效高度,β为天线的垂直半功率角。R为该小区最远的覆盖距离,即覆盖长径R,如下图所示。 定向基站天线覆盖长径示意图 在理想情况下R=2D/3。实际上天线的辐射方向图不可能完全适配三叶草型蜂窝结构。水平半功率角为60度左右的天线与之比较接近,而水平半功率角为90度的天线则相差较大。因此对于使用水平半功率角为90度天线的基站,取R=D/2。

  1.2 考虑加强覆盖时的下倾角 在基站分布较稀疏的地区,天线下倾角设定无需考虑垂直半功率角等因素的影响。为保证覆盖区边缘有足够强的信号,可认为天线主瓣方向延长线到地面的交点(B点)为该基站的实际覆盖边缘。在基站周围环境理想情况下,下倾角可按以下公式计算。 α=actan(H/R) 。

  1.3 倾角设定的实际应用 由于基站周围环境十分复杂,天线下倾角设定还必须考虑附近山体、水面和高大玻璃幕墙的反射和阻挡。因此具体基站的下倾角可利用上述方法,同时结合具体环境最终取定。

优化案例

  基站天线除了其类型和参数指标会影响无线覆盖效果之外,安装的位置、高度、方向角、下倾角对于无线网络覆盖性能也至关重要。在实际工程中,由天线选择设置不当造成无线网络覆盖质量下降的情况很多,例如:

  1)天线选择及方位角设置不当导致覆盖问题。

  在某GSM网络基站A(配置为S(1/1/1)的覆盖范围内,农场的覆盖不好,部分型号的手机能够上网打电话(手机接收信号显示有1、2格),部分手机处于上网的临界状况(手机接收信号显示有1格或没有或下网),打电话很容易掉话。测试过程中发现,在去农场的路上一直是3小区的频点。在接近农场时,切换(重选)为相邻基站B(相距约10km)的某一频点,而在农场区域,TCH(业务信道)一直是基站B的该频点,接收电平为-100dBm左右。当离开农场一段距离时,切换为基站A的2小区。也就是说:在农场的覆盖区域内,没有采用较近的基站A作为服务区,而是采用了更远基站B。经分析,其原因在于天线的主瓣方向没有正对农场,而天线的半功率角为65°,农场处于2、3小区两个天线旁瓣区域内;另一方面,半功率角65°的天线在郊区覆盖范围较大的情况下,旁瓣的覆盖不如在市区覆盖好。将天线更换为半功率角90°的天线,并调整天线的方位角,使2小区的天线主瓣正对农场后,故障排除。

  2)天线下倾角选择不当造成呼叫建立异常。

  某地出现手机显示接收信号较强(2~3格),但是无法通话的情况:做主叫时,拨号后无反应;做被叫时,可振铃但不能通话。使用测试手机观察故障地区接收信号情况,发现最强的信号(-85 dBm左右)来自距该地20 km以外的基站,由于GSM系统MS(移动台)小区选择使用的是搜索到的信号强度的频点,而利用此频点所属基站离MS过远,上行信号达到基站时的信号电平低于该基站的接收机灵敏度,因而造成了上述现象。根据实地勘测,发现基站所在地的海拔高度比故障区域约高200m,且之间几乎没有任何阻挡,另外该基站的天线下倾角为0°,所以该基站的信号到故障区域基本上为视距传播,导致了非常严重的越区覆盖。采用加大天线下倾角,对干扰小区的覆盖范围进行控制后,故障排除。

  3)天线挂高过高,引起切换成功率低、掉话率高。

  某GSM网络切换成功率不足80%,掉话率超过2%,通话质量差。通过查看分析话统任务数据,发现切换原因及不成功主要是由于上、下行电平差造成,且下行质量差的次数大大高于上行质量差的次数。实际路测结果表明,市区内室外信号强度能达到-80dBm以上,覆盖没有问题。但存在比较严重的越区覆盖问题。如在A基站所在楼内,手机所在的服务小区为与A基站1小区具有相同BCCH(广播控制信道)频点的B小区,而B小区位于市郊距A基站6 km处。这样,就产生两方面的问题:在A基站1小区覆盖范围内,B小区信号形成同频干扰,导致下行链路质量;当选择B小区作为服务小区时,由于它的邻区只做了与它地理上有相邻关系的小区,而在A基站附近的小区没有做成它的邻区,这样当它的信号变得不可用时,它的邻区信号也不好,产生孤岛效应,就容易发生切换失败乃至掉话。经实地勘测,B小区天线挂高为50m,造成严重的越区干扰。因此可采用降低B小区的天线挂高或者将更换为电调下倾天线以加大下倾角度,从而减小B小区的覆盖范围,避免对A基站1小区的干扰。

维库电子通,电子知识,一查百通!

已收录词条44954