您好,欢迎来到维库电子市场网 登录 | 免费注册

磁流变液
阅读:12083时间:2011-04-13 10:57:23

  磁流变液英文名字为MagnetorheologicalFlu-ids简称MR我国研究人员有时也称为磁流变液.一般由基液、弥散质、活化剂三部分组成。磁流变液的工程应用遍布建筑结构、海洋平台、桥梁及高速车辆等领域,尤其是在车辆先进悬挂系统领域的应用备受国内外研究者的关注。

制备

  磁流变液一般由铁磁性易磁化颗粒、母液油和稳定剂三种物质构成。铁磁性(软磁性)固体颗粒有球状、棒状和纺锤状三种形态,密度为7~8g/cm3,其中球形颗粒的直径在0.1~500μm [10]范围内。目前可用作磁流变液的铁磁性固体颗粒是具有较高磁化饱和强度的羰基铁粉、纯铁粉或铁合金 。由于羰基铁粉饱和磁化强度为2.15特斯拉,且物性较软、具有可压缩性、材料成本低、购买方便,已成为最常用的材料之一。磁流变液的母液油(分散剂)一般是非导磁且性能良好的油,如矿物油、硅油、合成油等,它们须具有较低的零场粘度、较大范围的温度稳定性、不污染环境等特性 。稳定剂用来减缓或防止磁性颗粒沉降的产生。因为磁性颗粒的比重较大,容易沉淀或离心分离,加入少量的稳定剂是必须的。磁流变液的稳定性主要受两种因素的影响:一是粒子的聚集结块,即粒子相互聚集形成很大的团;二是粒子本身的沉降,即磁性粒子随时间的沉淀。这两种因素都可以通过添加剂或表面活性剂来减缓。由超精细石英粉形成的硅胶是一种典型的稳定剂,这种粒子具有很大的表面积,每个粒子具有多孔疏松结构可以吸附大量的潮气,磁性颗粒可由这些结构支撑均匀地分布在母液中。另一方面,表面活性剂可以形成网状结构吸附在磁性颗粒的周围以减缓粒子的沉降。稳定剂必须有特殊的分子结构,一端有一个对磁性颗粒界面产生高度亲和力的钉扎功能团,另一端还需一个极易分散于某种基液中去的适当长度的弹性基团。

  将这三种物质按一定的比例混合均匀,即可形成磁流变液。良好的磁流变液必须具有下列性能:(1)具有优良的磁化和退磁特性,以保证磁流变液的磁流变效应是一种可逆变化。因此这种流体的磁滞回线必须狭窄,内聚力较小,而磁导率很大,尤其是磁导率的初始值和极大值必须很大;(2)应具有较大的磁饱和特性,以便使得尽可能大的“磁流”通过悬浮液的横截面,从而给颗粒相互间提供尽可能大的能量;(3)应具有较小的能量损耗,在工作期间,全部损耗(如磁滞现象、涡流现象等)都应该是一个很小的量;(4)应具有高度磁化和稳定的性能,这就要求磁流变液中的强磁性粒子的分布必须均匀,而且分布率保持不变;(5)应具备极高的“击穿磁场”,以防止磁流变液被磨损并改变性能;(6)应在相当宽的温度范围内具有极高的稳定性,以保证磁流变液的流变性能不会在正常工作温度范围内发生改变;(7)构成磁流变液的原材料应是价廉的而不是稀有的。

  目前国际上关于磁流变液材料制备方法和工艺的报道比较多。中国科技大学磁流变研究组陈祖耀、江万权等人用Y-辐射技术产生直径在200nm~5μm 的Co粒子,并将铁颗粒表面复合此纳米尺寸的Co粒子,形成铁复合物为悬浮粒子制备的磁流变液。在中国科技大学的旋转式磁流变液测试系统上测试,结果表明剪切屈服应力显着增大;用直径为2.5μm~8μm羰基铁粉分散于硅油中,并用偶联剂预先处理,改善液态相和固态相的相容性,可有效防止粒子沉淀,该磁流变液效应显着,且具有较大的温度稳定性。2002年,中国科学技术大学磁流变研究组成功地筛选制备了KDC—1磁流变液,该样品实验室工艺稳定,有较大的剪切屈服强度和沉降稳定性,其主要力学性能指标与美国Lord公司产品接近。现已完成对3家友邻研究单位KDC—1 MRF小批量实验室规模供给,反映良好。

流变机理

  按照磁畴理论可以解释磁流变效应。在磁流变液中,每一个小颗粒都可当做一个小的磁体。在这种磁体中,相邻原子间存在着强交换耦合作用。它促使相邻原子的磁矩平行排列,形成自发磁化饱和区域即磁畴。无外磁场作用时,每个磁畴中各个原子的磁矩排列取向一致,而不同磁畴磁矩取向不同。磁畴的这种排列方式使每一颗粒处于能量最小的稳定状态。因此,所有颗粒平均磁矩为零,颗粒不显磁性。在外磁场作用下,磁矩与外磁场同方向排列时的磁能低于磁矩与外磁场反方向排列时的磁能,结果是同自发磁化磁矩成较大角度的磁畴体积逐渐缩小。这时颗粒的平均磁矩不等于零,颗粒对外显示磁性,按序排列相接成链。当外磁场强度较弱时,链数量少、长度短、直径也较细,剪断它们所需外力也较小。随外磁场不断增强,取向与外场成较大角度的磁畴全部消失,留存的磁畴开始向外磁场方向旋转,磁流变液中链的数量增加,长度加长,直径变粗,磁流变液对外所表现的剪切应力增强;再继续增加磁场,所有磁畴沿外磁场方向整齐排列,磁化达到饱和,磁流变液的剪切应力也达到。

  磁流变液的磁化特征不仅依赖固态相本身的磁特性,而且与颗粒间聚集状态和结构特征密切相关。另外,磁流变液的磁化饱和强度与体积分数无关,但磁化率却随体积分数的增加而线形增加,且有随颗粒直径增大而增大的趋势。在外加磁场作用下,磁流变液发生相变的三个临界磁场分别为Hc1、Hc2和Hc3,如图1。

  图a:当H < Hc1时,磁流变液完全处于流体状态,铁磁颗粒随机分布;

  图b:当Hc1 < H < Hc2时,开始形成链状结构,链与颗粒共存且随机分布;

  图c:当Hc2 < H < Hc3时,开始形成柱状结构,柱与链共存;

  图d:当H > Hc3时,颗粒全部形成柱状结构。

磁流变液的流变机理

应用

  磁流变液在外加磁场增强的过程中,液体的粘度随之增大并最终失去流动性变为固态,此过程耗能小、可逆、能产生较大屈服应力且在豪秒级内完成。利用此一系列性能,在充分考虑磁场、温度、颗粒尺寸、壁面效应和体积浓度等诸因素对应用器件影响的基础上,可以设计开发各种磁流变阻尼器件,主要有以下几类。

  (1)阻尼元件 此类装置是磁流变液的最典型应用,由于能产生强大的阻尼力,且阻尼器可根据外部的振动不同自行调节磁场强度大小,来改变振动系统的阻尼和刚度,达到主动减振的目的。根据阻尼器尺寸和使用环境不同,可以研制出机械上用各类阻尼器和阻尼力可高达20吨力的建筑物减振器。

  (2)控制元件 由于磁流变液相变的过程在毫秒量级内完成,因此可以做成敏捷度极高的控制元件,用于联接和传递两部件之间的力或力矩。如汽车用离合器、制动器等。

  (3)研磨和密封 在光学镜头的加工中,加工精度是制约镜头质量的关键因素和技术,因此提高加工精度对镜头的形成和微表面粗糙度有着非常重要的意义。如图9所示,采用磁流变液进行精加工,试件被固定在移动壁的某一位置,在工作表面和移动面之间的间隙内盛放磁流变液,线圈置于移动壁下方。在间隙处产生可控磁场,磁流变液随外加磁场的增强而固化,并随移动壁获得速度,此间隙处被称为抛光点,其过程由计算机精确控制,可完成复杂表面形状抛光和高表面光洁度。

研究方向

  磁流变液及其器件在机械、交通、舰船、航天、车辆、建筑等军用和民用领域具有广泛的应用前景,展望未来,其研究工作主要有以下几个方面。

  1)新型MRF材料研究。磁流变液材料在近10年取得了重大进展,已有商业化的产品出现。由于高新技术的飞速发展,传统的MRF材料不能完全满足工程领域的技术要求。例如:适用于高温、低温环境下的专用磁流变材料,在高频、高速振动环境下的特殊磁流变材料等。这就要求新型MRF材料向多功能化、高性能化的方向发展。

  2)新型MRF减振器研究。新型减振器要求在多种工况条件下,保持较高的阻尼动态变化范围,且变阻尼迟滞时间要尽可能短。为配合振动控制策略所需的振动状态参数监测与获取,采用BIT设计将加速度、阻尼力、温度等传感器嵌入磁流变减振器之中,这样可以大大降低磁流变减振器工程应用的难度,对推动工程应用意义重大。

  3)基于磁流变阻尼的半主动振动控制算法研究。前述控制算法在应用于磁流变阻尼半主动振动控制悬挂系统中取得了较好的效果,但是由于这些控制策略多数来源于经典控制理论,对磁流变阻尼振动控制存在“水土不服”的问题,因此如何根据磁流变阻尼特有的性质与特点对振动控制策略进行创新研究将成为很有发展前途的研究方向。

维库电子通,电子知识,一查百通!

已收录词条48243