移动电话射频设计目前最强大的趋势是推动可配置/免频带的无线和天线设计。使RF元件可以数位化重新配置的优点与需求逐渐增加,因此能够精确且数位化地控制频率和阻抗值,并持续对系统性能进行化。
如果一款移动电话设计要能实现未来用户所期望的各项广泛服务,创造性思维是不可或缺的;而许多产业观察者认为,微机电系统(MEMS)将是实现这种设计的下一波技术。
MEMS元件的推出已证实了其在大量消费性市场应用中的实用性,例如麦克风和游戏机等。我们似乎可以归纳出一个结论:未能整合MEMS功能的系统就不算完整。因此,MEMS遂成为每一系统在实现其功能、弹性以及与外界互连时不可或缺的新类比元件。
虽然摩尔定律描述了电晶体密度和运算能力的进展,但MEMS的整合将以较其更多倍的速度进展,并将许多原先需要混合建置的功能直接整合在晶片上。
射频(RF)设计目前最强大的趋势是推动可配置/免频带的无线和天线设计。使RF元件可以数位化重新配置的优点与需求逐渐增加,因此能够精确且数位化地控制频率和阻抗值,并持续对系统性能进行化。这种可配置的前端可在瞬间实现频率和通讯标准的切换,同时重复使用相同的信号路径。
WiSpry公司藉由结合MEMS技术和主流半导体制程技术,打造出一款具有即时数位可调且具成本效益的低损耗RF电容器,实现了动态RF技术──真正的软体定义无线电,其RF前端可透过基频进行数位化控制,且所有特殊标准功能都以数位信号处理(DSP)编程方式载入。一旦前端成为数位可调式,大多数的RF工程作业就可以转向软体部份,因而大幅减少硬体设计/再设计的数量和成本,并缩短手动调整电路所花的时间。
可编程前端RF可在多个平台上使用,且由于新的响应可被载入到平台的韧体中,因此它甚至可以提供一些‘未来验证标准’。
目前,大多数无线标准在频谱分配方案规定的频段内,采用两种频率光罩来进行数据的传送和接收──也称为频率双工。由于频谱分配存在地区性差异,加上全球彼此竞争的无线通讯标准数量庞大且快速革新,使得全球移动电话平台必须支援的频率数量倍增。尽可能有效地利用无线频谱,以及使用从前未用到的频谱来支援新服务,也在在引领频率双工的趋势发展。
然而,为了能够接取到无线网路,各个装置必须实现的技术需求始终如一。事实上,用于RF前端的高性能硬体方案必须能够提供必要的选择性、线性度和隔离,同时对电路的插入损耗和功耗要求最小化。
如果采用可调式的RF前端元件,那麽上述所有问题都可以避免,特别是针对目前所使用的通道可进行单链路化。
单链路方案的好处正获得广泛的认同,但在其建置过程依旧面临挑战。
可调式前端元件的研究已发展了数十年,但这项必备的技术直到目前才逐渐成熟。传统的问题主要出在尺寸、成本、可重复性、可靠性和性能方面,各个问题在早期也都获得部份的解决;然而WiSpry公司首度为市场带来完整的解决方案,并适用于低成本的量产市场。
WiSpry公司率先将高Q值(high-Q)MEMS电容器元件整合到主流RF CMOS制程技术中,实现了大量生产、低成本制程以及高性能RF MEMS技术的优势。
个别的电容器元件以具有数位可变气隙的微小平行排列电容整合在晶片上。个别旁路或串列元件整合为电容值单元,接着形成可包含任一独立单元组合的阵列,最终形成了具有良好电器特性的数位化电容器;其电容值比(/最小)超过10且Q值在1GHz时超过200以上。
维库电子通,电子知识,一查百通!
已收录词条48243个