您好,欢迎来到维库电子市场网 登录 | 免费注册

开关电容滤波器
阅读:13253时间:2010-12-23 14:09:28

  开关电容滤波器(Switch Capitor Filter,SCF)是一种由MOS开关、电容器和运算放大器构成的离散时间模拟滤波器,实际应用中,该滤波器可与其他电路集成在同一个芯片上,通过外部端子的适当连接获得不同的响应特性。某些单独的开关电容滤波器可作为通用滤波器使用,例如自适应滤波、跟踪滤波、振动分析以及语言和音乐合成等。

限制

  (1)噪 声 一个复杂的开关电容滤波器芯片中包含许多电容。为了使这些电容器的值最小,以便保证较小的芯片面积,内部用到的电阻与大多数CM0S集成电路中所用的相比阻值更大。因而,开关电容滤波器的输出噪声比传统的有源滤波器要高。开关电容滤波器产生的噪声有两种类型:时钟馈通和热噪声。开关电容滤波器的时钟通常是工作频率的50或l0O倍,因此在输出端它能很容易地被简单RC滤波器滤除。热噪声位于信号带内,一般比工作信号强度低80dB上。针对信噪比进行优化的增益分配可将热噪声最小化。同时还需要对印制电路板的版图和去耦方案进行仔细设计。CMOS开关造成的对片上电容的电荷注人,以及较高的内部阻抗造成开关电容滤波器的直流失调比有源滤波器要高。然而,一些容性耦合结构可用来消除这个问题。

  (2)频率限制 开关电容滤波器有一个受限的性能参数,即中心频率与Q值的乘积。换句活说,越高的中心频率,可实现的Q值越低。对较低的Q值,传统的开关屯容滤波器可工作在上限为200 kHz左右的频率范围内。采用较新的亚微米技术后,工作范围已经被延展到几MHz.

  由于我们处理的是抽样系统,因此会发生混叠效应。如果输入信号的频率高于Fs/2,频谱将发生混叠:其中fs是内部采样频率(一般为截止频率的50或100倍)。如果混叠的频率分量的幅度相当大,则将造成感兴趣的信号不可用。有时可用输人端的RC网络来避免这一现象,尤其是输人信号为渚波成分丰富的矩形脉冲的情况。

选型

  1 类型选择

  这里所设计的开关电容滤波器是应用于电力线信号传输,传输信号频率为57.6±16、76.8±16和115.2±16 kHz,所以需要将电力线上的低频噪声(包括电力线上50 Hz的电源信号)滤除,同时还需要滤除各种不可知的高频噪声。这样带通滤波器成为选择。

  滤波器的理想滤波特性是,通带内信号完全无衰减通过,阻带内信号完全衰减。但实际应用中,理想的滤波器是不存在的,只能用传输函数近似表达其滤波特性。根据对滤波器特性的不同要求,选择不同形式的近似函数,从而得到常用的滤波器:巴特沃思(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器、椭圆函数(Elliptic Function)滤波器。

  考虑电力线通讯中的信号与噪声特性,由于电力线所接触的环境复杂,噪声源多,所以电力线上的噪声能量很高。尤其在低频部分,其噪声能量比信号能量大很多倍。这就要求滤波器有良好的带外衰减特性,而且不允许阻带部分出现纹波。因此,椭圆函数滤波器就不能满足要求,而巴特沃思滤波器的衰减特性又不够好。综合考虑,切比雪夫滤波器是选择。滤波器阶数越高,其滚降速度越快,但是也意味更大的功耗和版图面积。于是这里采用6阶带通切比雪夫滤波器。

  2 实现方式

  高阶滤波器的实现方式主要有2种:级联法和梯形法。级联法需要先得出满足频率特性要求的S域传输函数H(s),然后经S域到Z域的频率变换后得出Z域传输函数H(x)。再将H(x)分解成一阶、二阶函数乘积,分别用一阶、二阶SC基本节实现,然后级联成整个开关电容滤波器电路。级联法实现高阶开关电容滤波器采用双线性变换法。这种方法简单明了,而且是直接级联,不存在基本节之间的反馈,只要基本节稳定,整个电路也就是稳定的。

  梯形法是无源梯形的有源SC模拟实现的。这种方法可进一步分为元件阻抗模拟和跳耦,前者以LC梯形滤波器为原型,用SC电路模拟原型中的阻抗元件而保持电压电荷关系不变;后者则通过用信号流程图表示LC梯形电路中的电压电流关系,然后用SC积分器实现开关电容滤波器。其中,有源跳耦结构是实现高选择性SCF的选择。因为这种跳耦滤波器不仅具有通带低灵敏度特性,而且对寄生电容不敏感,因此是设计者的选择。

  通过信号流程图法(SFG),构建同相、反相、有损、无损开关电容积分器,获得梯形电路。但这种方法在LC电路原型的串臂中至少存在一个电感,而对于全极点高通SCF,不能使用这种方法,因而只能使用级联法。

通用型

  通用的开关电容构建模块由采用图1所示配置的独立通用二阶滤波器构成。在单一封装内可包含多达四路的通用模块。这样的结构允许调整诸如中心频率、Q值、陷波位置和增益等滤波器参数。同时这些参数都可由电阻间的比值及所用的时钟频率来控制。图2所示为凌特公司的LTClO64和 LTC1068的框图,其中包含四路二阶节。如果要了解这些器件更细节的应用信息请参看参考文献及厂商网站。

例1的频率响应

  图1例1的频率响应

凌特公司 LTC1064和 LTC1068的框图

  图2凌特公司 LTC1064和 LTC1068的框图

  使用这些模块可以设计出不同复杂度的滤波器。设计过程包括把复杂的滤波器传递函数按需求变换成独立的一阶或二阶节。各节由诸如中心频率或截止频率、Q值和陷波频率等参数来定义,然后由级联的芯片来实现。说明了这个过程,其中使用 MF10类的双路开关电容滤波器实现了一个三阶椭圆函数低通滤波器。

选择指南

  开关电容滤波器相比,开关电容滤波器为电路设计者提供了一种既满足滤波需求,同时又只占用最小的印制电路板面积的解决方案。该方案具有高稳定性和高精度的特点,同时具各可用外部时钟控制频率特性的能力。表1 提供了一个开关电容滤波器的选择指南。

  表1  开关电容滤波器选择指南:通用开关电容滤波器

 开关电容滤波器选择指南
 开关电容滤波器选择指南
 开关电容滤波器选择指南

  注:其中大部份专用器件只是在现有通用产品的掩模上实现的-种定制。这个表格并非包罗万象的,因为还有其他一些定制产品存在,而且为满足特定需求还可能不断佝新的产品出现。

“共振”现象及其对策

  在信号处理仪器的硬件系统中抗混滤波器是一重要的部件。根据信号分的的要 求,抗混滤波器的截止频率范围控制在10Hz~20kHz。为了提高信号的频率分辨率,要求抗混滤波器的带宽是可变的。比如要分析100Hz以内的信号特征,该低通滤波器的带宽选为100Hz。设计时,按1、2、4、5倍乘的原则,将20kHz频率范围分成14档不同带宽来处理。若采用一般的模拟低通滤波器必须电路繁复、换档不便、体积太大、不甚实用。用集成开关电容滤波器发展很快,生产公司不少,器件目前已系列化。它改变截止频率非常方便,只要程近不同的采样频率即可。因此,选择8阶开关电容椭圆低通滤波器MAX293作抗混滤波器用。理论上8阶低通滤波器适合于制作抗混滤波器,其截止频率后的衰减为160dB/10倍频,由文献(1)可知,如截止频率为1kHz,则到1.5kHz处,信号衰减了80dB[1],接近理想的低通滤波器,这是由椭圆滤波的特点所决定的。实测的滤特图(幅频特性)也有相似结果。但在试制过程中,发现该滤波器有“共振”现象,以下就此现象试作分析。

  1 开关电容滤波器的“共振”现象

  在用NW1232低频频率特性测试MAX293的幅频特性时,发现屏幕上除了预期的幅频特性之外,在采样频率及其整数倍的频率处具有窄带通形状的峰值,其高度达到甚至超过了前面幅频特性平坦部分的值。也就是说,当输入信号频率等于采样频率或为采样频率的整数倍时,出现了这一现象。此现象从未见文献报导过,暂时称之为“共振”现象,如在使用中对其不加处理,则将严重干扰有用信号。为了弄清原因,重复作了试验。采取自动扫描、手动扫描、变采样频率后扫描等方法,该现象始终如期而至。为了滤去该“高频干扰”,在MAX293电路之后,接上模拟低通滤波器。然而不管接二除低通还是四阶低通模拟滤波器,其输出仍然存在该“干扰”,而且幅值无任何减小。

  2 “共振”现象的解释

  用模拟低通滤波器做实验,当然不存在此现象。因此,原因必然在于具有采样环节的开关电容上。在开关电容滤波器中,当开关频率(即采样频率、时钟频率)大大于信号频率时(文献(2)指出,一般要大于20倍),开关电容等效于模拟阻容滤波器中的电阻,可推导出,其等效电阻R=1/(C·fc),其中C为电容,fc为开关滤波[3]。通过分析得到,当信号频率和采频率同频时,就会出现如图1所示的现象。

“共振”现象的解释

  图中输入信号vi为正弦波(方波也一样),1、2……为同频采样信号。在相位适当的时候(如图1所示),开关电容滤波器的电容上将出现输入信号的峰值。相位的不同,采样到的值也不同,但各采样点所采样的值是相同的。因此在采样电容上产生一个直流信号,使流波器输出一个直流电平。当观察幅频特性时,在输入信号与采样信号同频且相位合适时,就出现了上述所谓的“共振”现象。而且其后的低通模拟滤波器对此无能为力。同理,当信号频率为采样频率的整数倍时,显然也会出现相同的现象。

  3 试验结果

  为了证实上述的分析,采用如图2(a)所示的一阶低通滤波器作了度验。图中vi为正弦波输入,φ1,φ2为两相脉冲作采样开关信号,vo为输出信号。

共振现象试验电路

  在低频特性测试仪上测试,φ1、φ2的频率fφ为10kHz,除了在近100Hz处转折的低通幅频特性外,在10kHz、20kHz处,出现了峰值。此处fφ即为上述的开关频率fc,其与低通滤波器的转折频率的关系,取决于图2(a)中的C1和C2之比值。此时用电压表测量vo为直流电压4V,用晶体管毫伏表测得输入信号值为2.8V。从而证实了上述分析。

  为了去除“共振”现象,要限制输入信号的范围,使之小于采样频率。因此采用集成开关电容低通滤波器(如MAX293一类)时,在其前面,必须要增加模拟低通滤波器,把采样频率及其以上的高频信号有效的排除在外才行。

  4 基于MAX293的实用抗混滤波器

  集成开关电容滤波器体积小、阶数高、衰减沿陡、改变通带宽度非常方便,因此用途十分广泛,特别是在要求有不同带宽的场合。其缺点是本身有开关噪声,尤其是存在上述的“共振”现象。因此在使用时,要根据不同的要求,采取必要的措施。现以采用MAX293制作抗混滤波器为例予以说明。

  图3为信号处理仪器硬件框图。其中,MAX293及其前后的模拟低通滤波器一起,组成通带可编程抗混滤波器。

信号处理仪器硬件框图

  根据界面上测量显示信号的大小,用PC机上的键盘选取量程程控放大器的放大倍数,以得到幅度合适的信号。AMX293滤波器前后,接有两个可编程模拟低通滤波器,它们有同步的三个可编程转折频率,由PC机给出地址,切换到不同值 的滤波电容来实现。用MAX293滤波器前的双二阶可编程模拟低通滤波器消除“共振”现象,用后边的二阶低通滤波器消除采样频率信号fc所引起的噪声。由于MAX293从10Hz~20kHz分成14档,其截止频率与采样频率fc之比值为1:100[1],所以模拟滤波器的转折频率为100Hz、1kHz、10kHz三档,它们能将盯应于fc及其以上的信号谐滤排除在外。MAX293的不同截止频率是由PC机通过改变fc而得到的。所有模拟滤波器设计成Butterworth滤波器。本硬件系统及相应的软件系统已销售多套,并于2001年11月通过由机械工业技术发展基金会组织的鉴定。

维库电子通,电子知识,一查百通!

已收录词条48237