您好,欢迎来到维库电子市场网 登录 | 免费注册

永磁无刷电动机
阅读:4366时间:2016-09-19 09:42:01

与传统的电励磁电动机相比,永磁电动机特别是稀土永磁电动机具有结构简单、运行可靠、体积小、质量小、损耗少、效率高,以及电动机的形状和尺寸可以灵活多样等显著优点,因为应用范围极为广泛,几乎遍及航空航天、国防、工农业生产和日常生活的各个领域。

结构

永磁无刷电动机可以看做是一台用电子换向装置取代机械换向的直流电动机,直流无刷电动机主要由永磁电动机本体、转子位置传感器和电子换向电路组成。无论是结构或控制方式,永磁直流无刷电动机与传统的直流电动机都有很多相似之处:用装有永磁体的转子取代有刷直流电动机的定子磁极;用具有多相绕组的定子取代电枢;用由固态逆变器和轴位置检测器组成的电子换向器取代机械换向器和电刷。

电动机本体

电动机本体和永磁同步电动机(PMSM)相似,转子采用永磁磁铁,目前多使用稀土永磁材料,但没有笼式绕组和其他启动装置。其定子绕组采用交流绕组行驶,一般支撑多相(三相、四相或五相),转子由永磁钢按一定极对数(2P=2,4,6…)组成。设计中要求在定子绕组中获得顶宽为120°的梯形波,因此绕组行驶往往采用整距、集中或接近整距、集中的形式,以便保留磁密中的其他谐波。有刷直流电动机是依靠机械换向器将直流电流转换位近似梯形波的交流电流供给电枢绕组,而无刷直流电动机是依靠电子换向器将方波电流按一定的相序逐次输入到定子的各相电枢绕组中。当无刷直流电动机定子绕组的某相通电时,该相电流产生的磁场与转子磁铁所产生的磁场相互作用而产生转矩,驱动转子旋转。位置传感器将转子磁铁位置变换成电信号去控制电子开关线路,从而使定子的各项绕组按一定的次序导通,使定子的相电流随转子位置的变化而按正确的次序换相。这样才能让电子磁场随转子的旋转不断地变化、产生于转子转速同步的旋转磁场,并使定子磁场与转子的磁场始终保持90°左右的空间角,用转矩推动转子旋转。由于电子开关线路的导通次序与转子转角同步,起到机械换向器的换向作用,保证了电动机在运行过程中定子与转子的磁场始终保持基本垂直,以提高运行效率。所以无刷直流电动机就其基本结构而言,可以人为是一台由电子开关换相电流、永磁式同步电动机以及位置传感器三者组成的“自同步电动机系统”,它在运行过程中不会失步。永磁无刷电动机BLDCM 的转子结构既有传统的内转子结构,又有今年来出现的额盘式结构、外转子结构和线性结构等新型结构形式,伴随着新型永磁材料的实用化,电动机转子的结构越来越多样化,使电动汽车电机永磁无刷电动机BLDCM 正朝着高出力、高精度、微型化合耐环境等多种用途发展。

转子位置传感器

转子位置传感器有光电式、磁敏式和电磁式三种类型。
采用光电式位置传感器的无刷直流电动机,在定子组件上按一定位置配置了光电传感器件,转子装有遮光板,光源为发光二极管或小灯泡。转子旋转时,由于遮光板的作用,定子上的光敏元器件将会按一定频率间歇发出脉冲信号。
磁敏式位置传感器是指它的某些点阐述随周围磁场按一定规律变化的半导体敏感元件,其基本原理为霍尔效应和磁阻效应。磁敏元件的主要工作原理是电流的磁效应,主要是霍尔效应。采用磁敏式位置传感器的无刷直流电动机,其磁敏传感器件(如霍尔元件、磁敏二极管、磁敏三极管、磁敏电阻器或专用集成电路)装载定子组件上,用来检测永磁体、转子旋转时产生的磁场变化。
采用电磁式位置传感器的无刷直流电动机,是在定子组件上安装电磁传感器部件,当永磁体转子位置发生变化时,电磁效应将使电磁传感器长生高频调制信号(其幅值随转子位置的变化而变化)。
几年来还出现了无位置传感器的无刷直流电动机,磁中电动机利用定子绕组的反电动势作为转子磁铁的位置信号,该信号检出后,经数字电路处理,送给逻辑开关电路去控制无刷直流电动机的换向。由于它省去了位置传感器,使无刷电动机的结构更加紧凑,所以应用日趋广泛。

电子换向器

电子换向电路由功率变换电路和控制电路两大部分组成,它与位置传感器相配合,控制电动机定子各相绕组的通电顺序和时间,起到与机械换向类似的作用。
当系统运行时,功率变换器接受控制电路的控制信息,使系统工作电源的功率以一定的逻辑关系分配给直流无刷电动机定子上的各相绕组,以便使电动机产生持续不断的转矩。逆变器将直流电流转换成交流电流向电动机供电,与一般逆变器不同,它输出频率不是独立调节的,而是受控于转子位置信号,是一个“自控式逆变器”。永磁无刷电动机BLDCM 由于采用自控式逆变器,电动机输入电流的频率和电动机转速始终保持同步,电动机和逆变器不会产生振荡和失步,这也是永磁无刷电动机BLDCM 的显著优点之一。
电动汽车电机电动机各项绕组导通的顺序和时间主要取决于来自位置传感器的信号,但位置所产生的信号一般不能直接用来驱动功率变换器的功率开关元件,往往需要经过控制电路进行逻辑处理、隔离放大后才能驱动功率变换器的开关元件,往往需要经过控制电路进行逻辑处理、隔离方法后才能驱动功率变换器的开关元件。驱动空盒子电路的作用是将位置传感器检测到的转子位置信号进行处理,按一定的逻辑代码输出,去触发功率开关管。
永磁无刷直流电动机的工作原理
永磁无刷直流电动机的控制系统主要有永磁无刷直流电动机、直流电压、逆变器、位置传感器和控制器几部分组成,采用“三相六拍—120°方波型”驱动。
永磁无刷直流电动机通过逆变器功率管按一定的规律导通、关断,使电动机定子电枢产生按60°电角度不断前进的磁势,带动电动机转子旋转来实现的。分析如图5.21所示。图a是理想条件下的电枢各相反电势和电流,每个功率管导通120°电角度,互差60°电角度,当功率管V3和V4导通时,电动机的V和—U(电流流进绕组方向为正向)相通(参考图1)。定子电枢合成磁势为图b所示的Fa5;若功率管V3关断,功率管V5导通,此时电动机的W相和—U相通电,电枢合成磁势变为Fa5,Fa5 比Fa4顺时针前进了60°电角度。由此可知,定子电枢产生的磁势将随着功率管有规律地不断导通和关断,并按60°电角度不断地顺时针转动。逆变器功率管共有六种出发组合状态,每种出发组合状态只有与确定的转子位置或发电动机波形相对应,才能产生的平均电磁转矩。当两个磁势向量的夹角为90°是,相互作用力。而电子电枢产生的磁势是以60°电角度在前进,因此在每种出发模式下,转子磁势与定子磁势的夹角在60°~120°范围变化才能产生的平均电磁转矩。如图c所示,假如在t1时刻,转子的此时Fj处于线圈U、X平面内,且使转子顺时针旋转,此时应该导通功率管V5和V4,使定子的合成磁势为Fa5与Fj的夹角成120°。转子在Fa5与Fj相互作用产生电磁转矩的作用下顺时针旋转,到t3时刻Fa5与Fj的夹角成60°,此时关断功率管V4,导通功率管V6,定子合成磁势为Fa6,与Fj的夹角成120°,两者产生的电磁转矩使转子进一步旋转。

专家系统智能控制

专家控制(Expert control)是智能控制的一个重要分支。专家控制的实质是基于控制对象和控制规律各种知识,并以智能方式利用这些知识使控制系统尽可能优化。
专家控制的基本思想是:自动控制理论+专家系统技术。自动控制系统中存在大量的启发式逻辑,这是因为工业控制对象及其环境的变化呈现出多样性、非线性和不确定性,这些启发式逻辑实际上是实现控制目标的各种经验知识,难以用一般的数值形式描述,而适于用符号形式来表达,人工智能中的专家系统技术恰恰为这类经验知识提供了有效的表示和处理方法。
知识库和推理机为专家系统的两大要素,知识库存储某一专门领域的专家知识、条目,推理机制按照专家水平的问题求解方法调用知识库中的知识条目进行推理、判断和决策。专家系统与传统自动控制理论的结合,形成了专家控制系统,这类系统以模仿人类智能为基础,弥补了以数学模型为基础的控制系统的不足。
目前专家控制的研究大致包括用于传统PID控制和自适应控制的专家控制和.基于模糊规则的控制方法。
模糊逻辑智能控制
模糊逻辑控制实质上是利用计算机模拟人的模糊逻辑思维功能实现的一种数字反馈控制。人的思维具有模糊逻辑的特点,因此用计算机模拟人的模糊思维,即模糊概念、模糊判断和模糊推理,就是模糊控制的思维科学基础,再和反馈控制理论相结合就可以实现模糊控制。
传统的PID控制系统设计中需要给出被控对象的精确模型。模型的不精确性及不确定性都会影响PID控制性能。相反,模糊控制不需要知道被控对象的精确模型,它是基于控制系统输入/输出数据因果关系的模糊推理控制。
模糊控制不是基于被控对象精确模型的控制方式,因此具有较强的鲁棒性,其稳态精度可以通过引进智能积分等方法达到所要求的精度。此外,还可以将模糊逻辑推理和PID控制相结合,对PID控制参数进行自适应调整,实现无静态跟踪伺服控制。
神经网络智能控制
人工神经网络是利用计算机模拟人类大脑神经系统的联接机制而设计的一种信息处理的网络结构,一般简称神经网络(NN)。神经网络中最基本单元是神经细胞,简称神经元。它是一种多输入单输出的信息处理单元,包括输入处理、活化处理和输出处理三个部分。从控制的观点,神经元模型由加权加法器、单输入单输出线性动态系统和静态非线性函数所组成。它们模拟神经细胞综合处理信息的突变性和饱和性的非线性特征。
神经网络是由大量神经元构成网络,能够根据某种学习规则,通过调整神经元之间的联接强度(权重)来不断改进网络的逼近性能,即神经网络具有非常强的非线性映射能力。正因为如此,神经网络在智能控制、模式识别、故障诊断、系统辩识等领域获得了广泛应用。
除了上述的专家系统、模糊伺服控制、神经网络伺服控制策略外,还有遗传算法等控制。

永磁无刷电动机相关技术资料更多>>

维库电子通,电子知识,一查百通!

已收录词条48237