光栅尺是光栅尺位移传感器的简称,是将动态的位移测量以编码方式输出的长度测量仪器。
光栅尺在现代工业的贡献也是非常巨大的,不仅仅将现在加工精度进一步完善,更重要的是提高了现在加工时的工作效率。在现在中国加工业、制造业越来越成熟,对加工的精度越来越高的时候,在各种机床上,例如:铣床、磨床、车床、线切割、电火花等机床上都可以安装光栅尺,其工作环境要求相对来说不是很苛刻,对操作者的使用来说也十分简单。
光栅尺只是一个反应装置,它可以将位移量和位移方向通过信号输出的方式反馈出来,但它不能直接显示出来,它还需要一个显示装置,我们简称它为数显显示箱,也称数显表。只有当光栅尺和数显表连接在一起的时候,才能正常的将数值反应给每一位操作者,因而,我们对于光栅尺的使用上面,还是要多了解,如果不是很的人员,需要知道一些性的知识,才能单独使用光栅尺作为反馈装置使用。
常见光栅的工作原理都是根据物理上莫尔条纹的形成原理进行工作的。当使指示光栅上的线纹与标尺光栅上的线纹成一角度来放置两光栅尺时,必然会造成两光栅尺上的线纹互相交叉。在光源的照射下,交叉点近旁的小区域内由于黑色线纹重叠,因而遮光面积最小,挡光效应最弱,光的累积作用使得这个区域出现亮带。相反,距交叉点较远的区域,因两光栅尺不透明的黑色线纹的重叠部分变得越来越少,不透明区域面积逐渐变大,即遮光面积逐渐变大,使得挡光效应变强,只有较少的光线能通过这个区域透过光栅,使这个区域出现暗带,这些暗带就是莫尔条纹。
以透射光栅为例,当指示光栅上的线纹和标尺光栅上的线纹之间形成一个小角度θ,并且两个光栅尺刻面相对平行放置时,在光源的照射下,位于几乎垂直的栅纹上,形成明暗相间的条纹。这种条纹称为“莫尔条纹”。严格地说,莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直。莫尔条纹中两条亮纹或两条暗纹之间的距离称为莫尔条纹的宽度,以W表示:W=ω /2* sin(θ/2)=ω /θ
莫尔条纹具有以下特征:
(1)莫尔条纹的变化规律
两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离。由于光的衍射与干涉作用,莫尔条纹的变化规律近似正(余)弦函数,变化周期数与光栅相对位移的栅距数同步。
(2)放大作用
在两光栅栅线夹角较小的情况下,莫尔条纹宽度ω和光栅栅距W、栅线角θ之间有下列关系。式中,θ的单位为rad,W的单位为mm。由于倾角很小,sinθ很小,则
W=ω /θ
若ω =0.01mm,θ=0.01rad,则上式可得W=1,即光栅放大了100倍。
(3)均化误差作用
莫尔条纹是由若干光栅条纹共用形成,例如每毫米100线的光栅,10mm宽度的莫尔条纹就有1000条线纹,这样栅距之间的相邻误差就被平均化了,消除了由于栅距不均匀、断裂等造成的误差。
检测与数据处理
光栅测量位移的实质是以光栅栅距为一把标准尺子对位称量进行测量。高分辨率的光栅尺一般造价较贵,且制造困难。为了提高系统分辨率,需要对莫尔条纹进行细分,目前(2006年)光栅尺位移传感器系统多采用电子细分方法。当两块光栅以微小倾角重叠时,在与光栅刻线大致垂直的方向上就会产生莫尔条纹,随着光栅的移动,莫尔条纹也随之上下移动。这样就把对光栅栅距的测量转换为对莫尔条纹个数的测量。
在一个莫尔条纹宽度内,按照一定间隔放置4个光电器件就能实现电子细分与判向功能。例如,栅线为50线对/mm的光栅尺,其光栅栅距为0.02mm,若采用四细分后便可得到分辨率为5μm的计数脉冲,这在工业普通测控中已达到了很高精度。由于位移是一个矢量,即要检测其大小,又要检测其方向,因此至少需要两路相位不同的光电信号。为了消除共模干扰、直流分量和偶次谐波,通常采用由低漂移运放构成的差分放大器。由4个光敏器件获得的4路光电信号分别送到2只差分放大器输入端,从差分放大器输出的两路信号其相位差为π/2,为得到判向和计数脉冲,需对这两路信号进行整形,首先把它们整形为占空比为1:1的方波。然后,通过对方波的相位进行判别比较,就可以得到光栅尺的移动方向。通过对方波脉冲进行计数,可以得到光栅尺的位移和速度。
光栅尺位移传感器按照制造方法和光学原理的不同,分为玻璃透射光栅和金属反射光栅。
光栅尺位移传感器是有标尺光栅和光栅读数头两部分组成。标尺光栅一般固定在机床活动部件上,光栅读数头装在机床固定部件上,指示光栅装在光栅读数头中。右图所示的就是光栅尺位移传感器的结构。光栅检测装置结构光栅检测装置的关键部分是光栅读数头,它由光源、会聚透镜、指示光栅、光电元件及调整机构等组成。光栅读数头结构形式很多,根据读数头结构特点和使用场合分为直接接收式读数头(或称硅光电池读数头、镜像式读数头、分光镜式读数头、金属光栅反射式读数头)。
1、各类测量机构、仪器的位移测量:弹簧试验机、三坐标机、投影仪;
2、各类机床的数显系统:车床、铣床、磨床、镗床、电火花、钻床等;
3、各类数控机床的配套使用:数控铣、加工中心、数控磨等;
4、光栅尺配接PLC,用于各类自动化机构的位移测量。
光栅尺位移传感器的安装比较灵活,可安装在机床的不同部位。
一般将主尺安装在机床的工作台(滑板)上,随机床走刀而动,读数头固定在床身上,尽可能使读数头安装在主尺的下方。其安装方式的选择必须注意切屑、切削液及油液的溅落方向。如果由于安装位置限制必须采用读数头朝上的方式安装时,则必须增加辅助密封装置。另外,一般情况下,读数头应尽量安装在相对机床静止部件上,此时输出导线不移动易固定,而尺身则应安装在相对机床运动的部件上(如滑板)。
一、基面安装
安装光栅尺位移传感器时,不能直接将传感器安装在粗糙不平的机床身上,更不能安装在打底涂漆的机床身上。光栅主尺及读数头分别安装在机床相对运动的两个部件上。用千分表检查机床工作台的主尺安装面与导轨运动的方向平行度。千分表固定在床身上,移动工作台,要求达到平行度为0.1mm/1000mm以内。如果不能达到这个要求,则需设计加工一件光栅尺基座。
基座要求做到:(1)应加一根与光栅尺尺身长度相等的基座(基座长出光栅尺50mm左右)。(2)该基座通过铣、磨工序加工,保证其平面平行度0.1mm/1000mm以内。另外,还需加工一件与尺身基座等高的读数头基座。读数头的基座与尺身的基座总共误差不得大于±0.2mm。安装时,调整读数头位置,达到读数头与光栅尺尺身的平行度为0.1mm左右,读数头与光栅尺尺身之间的间距为1~1.5mm左右。
二、主尺安装
将光栅主尺用M4螺钉上在机床安装的工作台安装面上,但不要上紧,把千分表固定在床身上,移动工作台(主尺与工作台同时移动)。用千分表测量主尺平面与机床导轨运动方向的平行度,调整主尺M4螺钉位置,使主尺平行度满足0.1mm/1000mm以内时,把M2螺钉彻底上紧。
在安装光栅主尺时,应注意如下三点:
(1)在装主尺时,如安装超过1.5M以上的光栅时,不能象桥梁式只安装两端头,尚需在整个主尺尺身中有支撑。
(2)在有基座情况下安装好后,用一个卡子卡住尺身中点(或几点)。
(3)不能安装卡子时,用玻璃胶粘住光栅尺身,使基尺与主尺固定好。
三、读数头安装
在安装读数头时,如果发现安装条件非常的有限,可以考虑使用附件,如角铝、直板,首先应保证读数头的基面达到安装要求,然后再安装读数头,其安装方法与主尺相似。调整读数头,使读数头与光栅主尺平行度保证在0.1mm之内,其读数头与主尺的间隙控制在1~1.5mm以内。安装完毕后,可以用大拇指接触度数头与光栅尺尺身表面是否平滑、平整。
四、限位装置
光栅线位移传感器全部安装完以后,一定要在机床导轨上安装限位装置,以免机床加工产品移动时读数头冲撞到主尺两端,从而损坏光栅尺。另外,用户在选购光栅线位移传感器时,应尽量选用超出机床加工尺寸100mm左右的光栅尺,以留有余量。
五、传感器检查
光栅线位移传感器安装完毕后,可接通数显表,移动工作台,观察数显表计数是否正常。
在机床上选取一个参考位置,来回移动工作点至该选取的位置。数显表读数应相同(或回零)。另外也可使用千分表(或百分表),使千分表与数显表同时调至零(或记忆起始数据),往返多次后回到初始位置,观察数显表与千分表的数据是否一致。
通过以上工作,光栅尺线位移传感器的安装就完成了。但对于一般的机床加工环境来讲,铁屑、切削液及油污较多。因此,传感器应附带加装护罩,护罩的设计是按照传感器的外形截面放大留一定的空间尺寸确定,护罩通常采用橡皮密封,使其具备一定的防水防油能力。
1、光栅尺位移传感器与数显表插头座插拔时应关闭电源后进行。
2、尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。
3、定期检查各安装联接螺钉是否松动。
4、为延长防尘密封条的寿命,可在密封条上均匀涂上一薄层硅油,注意勿溅落在玻璃光栅刻划面上。
5、为保证光栅尺位移传感器使用的可靠性,可每隔一定时间用乙醇混合液(各50[%])清洗擦拭光栅尺面及指示光栅面,保持玻璃光栅尺面清洁。
6、光栅尺位移传感器严禁剧烈震动及摔打,以免破坏光栅尺,如光栅尺断裂,光栅尺传感器即失效了。
7、不要自行拆开光栅尺位移传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。
8、应注意防止油污及水污染光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。
9、光栅尺位移传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。
维库电子通,电子知识,一查百通!
已收录词条48334个