您好,欢迎来到维库电子市场网 登录 | 免费注册

John Von Neumann
阅读:9461时间:2011-03-31 16:48:21

  John Von Neumann(1903年12月28日-1957年2月8日),中文名:约翰·冯·诺伊曼,匈牙利语原名:Neumann János,是出生于匈牙利的美国籍犹太人数学家,现代电子计算机创始人之一,历来被誉为“电子计算机之父”。他在计算机科学、经济、物理学中的量子力学及几乎所有数学领域都作过重大贡献。

生平概述

  冯·诺伊曼是Neumann Miksa和Kann Margit的三个孩子中的一个。小时候外号“Jancsi”的他已经显出惊人的记忆力:六岁已能用古希腊语同父亲闲谈,还可以心算八位数除法。年少的他不但对数学很有兴趣,亦喜欢阅读历史、社会的书籍,读过的书籍和论文能很快一句不漏地将内容复述出来,而且多年以后仍是如此。1913年,父亲买了一个爵位,诺伊曼得到德国名von,成为János von Neumann。

  1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了篇数学论文,此时冯·诺依曼还不到18岁。

  1921年一1923年在苏黎世联邦工业大学学习。

  1926年以22岁的年龄获得了布达佩斯大学数学博士学位,相继在柏林大学和汉堡大学担任数学讲师。

  1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。

  1930年接受了普林斯顿大学客座教授的职位,西渡美国。在这一年,冯·诺依曼与他的任妻子( Mariette Kvesi)结婚。

  1931年他成为美国普林斯顿大学的批终身教授,那时,他还不到30岁。

  1933年转入普林斯顿高等研究院,与爱因斯坦等人成为该院最初的四位教授之一,不须上课。这一年,他解决了希尔伯特第5个问题。

  1937年成为美国公民,遗憾的是他与妻子也在这一年分开了。

  1938年获颁博修奖( Bcher Memorial Prize)。同年,他与第二任妻子(Klara Dan)结婚。

  1940年以后他转向应用数学,在力学、经济学、数值分析和电子计算器方面都有重要贡献。

  1942年起,他同莫根施特恩合作,写作《博弈论和经济行为》一书,这是博弈论(又称对策论)中的经典着作,使他成为数理经济学的奠基人之一。

  1945年3月他在共同讨论的基础上起草EDVAC(电子离散变量自动计算机)设计报告初稿,这对后来计算机的设计有决定性的影响,特别是确定计算机的结构,采用存储程序以及二进制编码等,至今仍为电子计算机设计者所遵循。

  1946年,冯·诺依曼开始研究程序编制问题,他是现代数值分析——计算数学的之一,他首先研究线性代数和算术的数值计算,后来着重研究非线性微分方程的离散化以及稳定问题,并给出误差的估计。

  1954年任美国原子能委员会委员。1954年夏天,右肩受伤,手术时发现患有骨癌,治疗期间,依然参加每周三次的原子能委员会会议,甚至美国国防部长,陆、海、空三军参谋长聚集在病房开会。

  1957年2月8日,在华盛顿德里医院去世。晚年,有学生请教他做事的方法,他说:“简单”(simple)。

  1994年被授予美国国家基础科学奖。

感情生活

  l930年冯·诺依曼和玛丽达·柯维斯结婚。1935年他们的女儿玛丽娜出生在普林斯顿。冯·诺依曼家里常常举办时间持续很长的社交聚会,这是远近皆知的。l937年冯·诺依曼与妻子离婚,1938年又与克拉拉·丹结婚,并一起回普林斯顿。丹随冯·诺依曼学数学,后来成为的程序编制家。与克拉拉婚后,冯·诺依曼的家仍是科学家聚会的场所,还是那样殷勤好客,在那里人人都会感到一种聪慧的气氛。

在数学领域的贡献

  一、集合论数学基础

  冯·诺依曼的篇论文是和菲克特合写的,是关于车比雪夫多项式求根法的菲叶定理推广,注明的日期是1922年,那时冯·诺依曼还不满18岁。另一篇文章讨论一致稠密数列,用匈牙利文写就,题目的选取和证明手法的简洁显露出冯?诺依曼在代数技巧和集合论直观结合的特征。

  1923年当冯·诺依曼还是苏黎世的大学生时,发表了超限序数的论文。文章句话就直率地声称“本文的目的是将康托的序数概念具体化、精确。他的关于序数的定义,现在已被普遍采用。强烈企求探讨公理化是冯·诺依曼的愿望,大约从l925年到l929年,他的大多数文章都尝试着贯彻这种公理化精神,以至在理论物理研究中也如此。当时,他对集合论的表述处理,尤感不够形式化,在他1925年关于集合论公理系统的博士论文中,开始就说“本文的目的,是要给集合论以逻辑上无可非议的公理化论述”。

  有趣的是,冯·诺依曼在论文中预感到任何一种形式的公理系统所具有的局限性,模糊地使人联想到后来由哥德尔证明的不完全性定理。对此文章,着名逻辑学家、公理集合论奠基人之一的弗兰克尔教授曾作过如下评价:“我不能坚持说我已把(文章的)一切理解了,但可以确有把握地说这是一件杰出的工作,并且透过他可以看到一位巨人”。

  1928年冯·诺依曼发表了论文《集合论的公理化》,是对上述集合论的公理化处理。该系统十分简洁,它用型对象和第二型对象相应表示朴素集合论中的集合和集合的性质,用了一页多一点的纸就写好了系统的公理,它已足够建立朴素集合论的所有内容,并借此确立整个现代数学。冯·诺依曼的系统给出了集合论的也许是个基础,所用的有限条公理,具有像初等几何那样简单的逻辑结构。冯·诺依曼从公理出发,巧妙地使用代数方法导出集合论中许多重要概念的能力简直叫人惊叹不已,所有这些也为他未来把兴趣落脚在计算机和“机械化”证明方面准备了条件。20年代后期,冯?诺依曼参与了希尔伯特的元数学计划,发表过几篇证明部分算术公理无矛盾性的论文。l927年的论文《关于希尔伯特证明论》最为引人注目,它的主题是讨论如何把数学从矛盾中解脱出来。文章强调由希尔伯特等提出和发展的这个问题十分复杂,当时还未得到满意的解答。它还指出阿克曼排除矛盾的证明并不能在古典分析中实现。为此,冯·诺依曼对某个子系统作了严格的有限性证明。这离希尔伯特企求的最终解答似乎不远了。这是恰在此时,1930年哥德尔证明了不完全性定理。定理断言:在包含初等算术(或集合论)的无矛盾的形式系统中,系统的无矛盾性在系统内是不可证明的。至此,冯?诺依曼只能中止这方面的研究。冯·诺依曼还得到过有关集合论本身的专门结果。他在数学基础和集合论方面的兴趣一直延续到他生命的结束。

  二、量子理论的数学基础

  在1930~l940年间,冯·诺依曼在纯粹数学方面取得的成就更为集中,创作更趋于成熟,声誉也更高涨。后来在一张为国家科学院填的问答表中,冯·诺依曼选择了量子理论的数学基础、算子环理论、各态遍历定理三项作为他最重要数学工作。1927年冯·诺依曼已经在量子力学领域内从事研究工作。他和希尔伯待以及诺戴姆联名发表了论文《量子力学基础》。该文的基础是希尔伯特1926年冬所作的关于量子力学新发展的讲演,诺戴姆帮助准备了讲演,冯?诺依曼则从事于该主题的数学形式化方面的工作。文章的目的是将经典力学中的精确函数关系用概率关系代替之。希尔伯特的元数学、公理化的方案在这个生气勃勃的领域里获得了施展,并且获得了理论物理和对应的数学体系间的同构关系。对这篇文章的历史重要性和影响无论如何评价都不会过高。冯·诺依曼在文章中还讨论了物理学中可观察算符的运算的轮廓和埃尔米特算子的性质,无疑,这些内容构成了《量子力学的数学基础》一书的序曲。

  l932世界闻名的斯普林格出版社出版了他的《量子力学的数学基础》 ,它是冯·诺依曼主要着作之一,初版为德文,1943年出了法文版,l949年为西班牙文版,l955年被译成英文出版,至今仍不失为这方面的经典着作。当然他还在量子统计学、量子热力学、引力场等方面做了不少重要工作。

  客观地说,在量子力学发展史上,冯·诺依曼至少作出过两个重要贡献:狄拉克对量子理论的数学处理在某种意义下是不够严格的,冯·诺依曼通过对无界算子的研究,发展了希尔伯特算子理论,弥补了这个不足;此外,冯·诺依曼明确指出,量子理论的统计特征并非由于从事测量的观察者之状态未知所致。借助于希尔伯待空间算子理论,他证明凡包括一般物理量缔合性的量子理论之假设,都必然引起这种结果。

  对于冯·诺依曼的贡献,诺贝尔物理学奖获得者威格纳曾作过如下评价:“在量子力学方面的贡献,就是以确保他在当代物理学领域中的特殊地位。”在冯·诺依曼的工作中,希尔伯特空间上的算子谱论和算子环论占有重要的支配地位,这方面的文章大约占了他发表的论文的三分之一。它们包括对线性算子性质的极为详细的分析,和对无限维空间中算子环进行代数方面的研究。算子环理论始于1930年下半年,冯·诺依曼十分熟悉诺特和阿丁的非交换代数,很快就把它用于希尔伯特空间上有界线性算子组成的代数上去,后人把它称之为冯·诺依曼算子代数。

  1936~l940年间,冯·诺依曼发表了六篇关于非交换算子环论文,可谓20世纪分析学方面的杰作,其影响一直延伸至今。冯·诺依曼曾在《量子力学的数学基础》中说过:由希尔伯特最早提出的思想就能够为物理学的量子论提供一个适当的基础,而不需再为这些物理理论引进新的数学构思。他在算子环方面的研究成果应验了这个目标。冯·诺依曼对这个课题的兴趣贯穿了他的整个生涯。算子环理论的一个惊人的生长点是由冯?诺依曼命名的连续几何。普通几何学的维数为整数1、2、3等,冯?诺依曼在着作中已看到,决定一个空间的维数结构的,实际上是它所容许的旋转群。因而维数可以不再是整数,连续级数空间的几何学终于提出来了。

  1932年,冯·诺依曼发表了关于遍历理论的论文,解决了遍历定理的证明,并用算子理论加以表述,它是在统计力学中遍历假设的严格处理的整个研究领域中,获得的项精确的数学结果。冯·诺依曼的这一成就,可能得再次归功于他所娴熟掌握的受到集合论影响的数学分析方法,和他自己在希尔伯特算子研究中创造的那些方法。它是20世纪数学分析研究领域中取得的最有影响成就之一,也标志着一个数学物理领域开始接近精确的现代分析的一般研究。此外冯·诺依曼在实变函数论、测度论、拓扑、连续群、格论等数学领域也取得不少成果。1900年希尔伯特在那次着名的演说中,为20世纪数学研究提出了23个问题,冯?诺依曼也曾为解决希尔伯特第五问题作了贡献。

  三、一般应用数学

  1940年,是冯·诺依曼科学生涯的一个转换点。在此之前,他是一位通晓物理学的登峰造极的纯粹数学家;此后则成了一位牢固掌握纯粹数学的出神入化的应用数学家。他开始关注当时把数学应用于物理领域去的最主要工具——偏微分方程。研究同时他还不断创新,把非古典数学应用到两个新领域:对策论和电子计算机。

  冯·诺依曼的这个转变一方面来自他长期对数学物理问题的钟情;另一方面来自当时社会方面的需要。第二次世界大战爆发后,冯·诺依曼应召参与了许多军事科学研究计划和工程项目。1940~1957年任马里兰阿伯丁试验弹道研究实验室科学顾问;1941~1955年在华盛顿海军军械局;1943~1955年任洛斯?阿拉莫斯实验室顾问;1950~1955年,陆军特种武器设计委员会委员;1951~1957年。美国空军华盛顿科学顾问委员会成员;1953~1957年,原子能技术顾问小组成员;1954~1957年,导弹顾问委员会主席。

  冯·诺依曼研究过连续介质力学。很久以来,他对湍流现象一直感兴趣。l937年他关注纳维—斯克克斯方程的统计处理可能性的讨论,1949年他为海军研究部写了《湍流的理论》。

  冯·诺依曼研究过激波问题。他在这个领域中的大部分工作,直接来自国防需要。他在碰撞激波的相互作用方面贡献引入注目,其中有一结果,是首先严格证明了恰普曼—儒格假设,该假设与激波所引起的燃烧有关。关于激波反射理论的系统研究由他的《激波理论进展报告》开始。冯·诺依曼研究过气象学。有相当一段时间,地球大气运动的流体力学方程组所提出的极为困难的问题—直吸引着他。随着电子计算机的出现,有可能对此问题作数值研究分析。冯·诺依曼搞出的个高度规模化的计算,处理的是一个二维模型,与地转近似有关。他相信人们最终能够了解、计算并实现控制以致改变气候。冯·诺依曼还曾提出用聚变引爆核燃料的建议,并支持发展氢弹。1947年军队发嘉奖令,表扬他是物理学家、工程师、武器设计师和爱国主义者。

在经济学的贡献

  在经济学领域,1944年冯·诺伊曼与奥斯卡·摩根施特恩合着的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。他被称为“博弈论之父”。博弈论被认为是20世纪经济学最伟大的成果之一。

  有两个奖项以他为名:

  ●INFORMS的冯·诺伊曼理论奖

  ●IEEE的IEEE冯·诺伊曼奖

与计算机

  对冯·诺依曼声望有所贡献的一个课题是电子计算机和自动化理论。

  早在洛斯·阿拉莫斯,冯·诺依曼就明显看到,即使对一些理论物理的研究,只是为了得到定性的结果,单靠解析研究也已显得不够,必须辅之以数值计算。进行手工计算或使用台式计算机所需化费的时间是令人难以容忍的,于是冯·诺依曼劲头十足的开始从事电子计算机和计算方法的研究。

  1944~l945年间,冯·诺依曼形成了现今所用的将一组数学过程转变为计算机指令语言的基本方法,当时的电子计算机(如ENIAC)缺少灵活性、普适性。冯·诺依曼关于机器中的固定的、普适线路系统,关于“流图”概念,关于“代码”概念为克服以上缺点作出了重大贡献。尽管对数理逻辑学家来说,这种安排是显见的。

  计算机工程的发展也应大大归功于冯·诺依曼。计算机的逻辑图式,现代计算机中存储、速度、基本指令的选取以及线路之间相互作用的设计,都深深受到冯·诺依曼思想的影响。他不仅参与了电子管元件的计算机ENIAC的研制,并且还在普林斯顿高等研究院亲自督造了一台计算机。稍前,冯·诺依曼还和摩尔小组一起,写出了一个全新的存贮程序通用电子计算机方案EDVAC,长达l0l页的报告轰动了数学界。这一向专搞理论研究的普林斯顿高等研究院也批准让冯·诺依曼建造计算机,其依据就是这份报告。

  速度超过人工计算千万倍的电子计算机,不仅极大地推动数值分析的进展,而且还在数学分析本身的基本方面,刺激着崭新的方法的出现。其中,由冯·诺依曼等制订的使用随机数处理确定性数学问题的蒙特卡洛法的蓬勃发展,就是突出的实例。

  19世纪那种数学物理原理的精确的数学表述,在现代物理中似乎十分缺乏。基本粒子研究中出现的纷繁复杂的结构,令人眼花廖乱,要想很决找到数学综合理论希望还很渺茫。单从综合角度看,且不提在处理某些偏微分方程时所遇到的分析困难,要想获得精确解希望也不大。所有这些都迫使人们去寻求能借助电子计算机来处理的新的数学模式。冯·诺依曼为此贡献了许多天才的方法:它们大多分载在各种实验报告中。从求解偏微分方程的数值近似解,到长期天气数值须报,以至最终达到控制气候等。

  在冯·诺依曼生命的几年,他的思想仍甚活跃,他综合早年对逻辑研究的成果和关于计算机的工作,把眼界扩展到一般自动机理论。他以特有的胆识进击最为复杂的问题:怎样使用不可靠元件去设计可靠的自动机,以及建造自己能再生产的自动机。从中,他意识到计算机和人脑机制的某些类似,这方面的研究反映在西列曼讲演中;逝世后才有人以《计算机和人脑》的名字,出了单行本。尽管这是未完成的着作,但是他对人脑和计算机系统的精确分析和比较后所得到的一些定量成果,仍不失其重要的学术价值。

逸闻趣事

  一次,在一个数学聚会上,有一个年轻人兴冲冲的找到他,向他求教一个问题,他看了看就报出了正确答案。年轻人高兴地请求他告诉自己简便方法,并抱怨其他数学家用无穷级数求解的烦琐。冯·诺依曼却说道:“你误会了,我正是用无穷级数求出的。”可见他拥有过人的心算能力。   据说有一天,冯·诺依曼心神不定地被同事拉上了牌桌。一边打牌,一边还在想他的课题,狼狈不堪地“输掉”了10元钱。这位同事也是数学家,突然心生一计,想要捉弄一下他的朋友,于是用赢得的5元钱,购买了一本冯·诺依曼撰写的《博弈论和经济行为》,并把剩下的5元贴在书的封面,以表明他 “战胜”了“赌博经济理论家”,着实使冯·诺依曼“好没面子”。   另一则笑话发生在ENIAC计算机研制时期。 有几个数学家聚在一起切磋数学难题,百思不得某题之解。有个人决定带着台式计算器回家继续演算。次日清晨,他眼圈黑黑,面带倦容走进办公室,颇为得意地对大家炫耀说:   “我从昨天晚上一直算到今晨4点半,总算找到那难题的5种特殊解答。它们一个比一个更难咧!”说话间,冯·诺依曼推门进来,“什么题更难?”虽只听到后面半句话,但“更难”二字使他马上来了劲。有人把题目讲给他听,教授顿时把自己该办的事抛在爪哇国,兴致勃勃地提议道:“让我们一起算算这5种特殊的解答吧。”

  大家都想见识一下教授的“神算”本领。只见冯·诺依曼眼望天花板,不言不语,迅速进到“入定” 状态。约莫过了5分来钟,就说出了前4种解答,又在沉思着第5种……。青年数学家再也忍不住了,情不自禁脱口讲出答案。冯·诺依曼吃了一惊,但没有接话茬。又过了1分钟,他才说道:“你算得对!”

  那位数学家怀着崇敬的心情离去,他不无揶揄地想:“还造什么计算机哟,教授的头脑不就是一台‘超高速计算机’吗?”然而,冯·诺依曼却呆在原地,陷入苦苦的思索,许久都不能自拔。有人轻声向他询问缘由,教授不安地回答说:“我在想,他究竟用的是什么方法,这么快就算出了答案。”听到此言,大家不禁哈哈大笑:“他用台式计算器算了整整一个夜晚!”冯·诺依曼一愣,也跟着开怀大笑起来。

维库电子通,电子知识,一查百通!

已收录词条48237