寄存器是CPU内部用来存放数据的一些小型存储区域,用来暂时存放参与运算的数据和运算结果。其实寄存器就是一种常用的时序逻辑电路,但这种时序逻辑电路只包含存储电路。寄存器的存储电路是由锁存器或触发器构成的,因为一个锁存器或触发器能存储1位二进制数,所以由N个锁存器或触发器可以构成N位寄存器。寄存器是有限存贮容量的高速存贮部件。寄存器是中央处理器内的组成部份,它们可用来暂存数据、指令和位址。在中央处理器的控制部件中,包含的寄存器有程序计数器(PC)和指令寄存器(IR)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。
寄存器又分为内部寄存器与外部寄存器,所谓内部寄存器,其实也是一些小的存储单元,也能存储数据。但同存储器相比,寄存器又有自己独有的特点:
① 寄存器位于CPU内部,数量很少,仅十四个;
② 寄存器所能存储的数据不一定是8bit,有一些寄存器可以存储16bit数据,对于386/486处理器中的一些寄存器则能存储32bit数据;
③ 每个内部寄存器都有一个名字,而没有类似存储器的地址编号。
寄存器的功能十分重要,CPU对存储器中的数据进行处理时,往往先把数据取到内部寄存器中,而后再作处理。关于各个寄存器的具体问题后面会深入讨论。
外部寄存器是计算机中其它一些部件上用于暂存数据的寄存器,它与CPU之间通过"端口"交换数据,所以外部寄存器具有寄存器和内存储器双重特点。有些时候我们常把外部寄存器就称为"端口",这种说法不太严格,但经常这样说。
外部寄存器虽然也用于存放数据,但是它保存的数据具有特殊的用途。某些寄存器中各个位的0、1状态反映了外部设备的工作状态或方式;还有一些寄存器中的各个位可对外部设备进行控制;也有一些端口作为CPU同外部设备交换数据的通路。所以说,端口是CPU和外设间的联系桥梁。
CPU对端口的访问也是依据端口的"编号"(地址),这一点又和访问存储器一样。不过考虑到机器所联接的外设数量并不多,所以在设计机器的时候仅安排了1024个端口地址,端口地址范围为0--3FFH。
1.存于寄存器内的地址可用来指向内存的某个位置即寻址; 2.可将寄存器内的数据执行算术及逻辑运算; 3.可以用来读写数据到电脑的周边设备。
1、指针寄存器 32位CPU有2个32位通用寄存器EBP和ESP。其低16位对应先前CPU中的SBP和SP,对低16位数据的存取,不影响高16位的数据。寄存器EBP、ESP、BP和SP称为指针寄存器(PointerRegister),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。指针寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们主要用于访问堆栈内的存储单元,并且规定: (1)BP为基指针(BasePointer)寄存器,用它可直接存取堆栈中的数据; (2)SP为堆栈指针(StackPointer)寄存器,用它只可访问栈顶。 2、指令指针寄存器 32位CPU把指令指针扩展到32位,并记作EIP,EIP的低16位与先前CPU中的IP作用相同。指令指针EIP、IP(InstructionPointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。在实方式下,由于每个段的范围为64K,所以,EIP中的高16位肯定都为0,此时,相当于只用其低16位的IP来反映程序中指令的执行次序。 3、变址寄存器 32位CPU有2个32位通用寄存器ESI和EDI。其低16位对应先前CPU中的SI和DI,对低16位数据的存取,不影响高16位的数据。寄存器ESI、EDI、SI和DI称为变址寄存器(IndexRegister),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。 4、段寄存器 段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成 的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址。 CPU内部的段寄存器: CS——代码段寄存器(CodeSegmentRegister),其值为代码段的段值; DS——数据段寄存器(DataSegmentRegister),其值为数据段的段值; ES——附加段寄存器(ExtraSegmentRegister),其值为附加数据段的段值; SS——堆栈段寄存器(StackSegmentRegister),其值为堆栈段的段值; FS——附加段寄存器(ExtraSegmentRegister),其值为附加数据段的段值; GS——附加段寄存器(ExtraSegmentRegister),其值为附加数据段的段值。 在16位CPU系统中,它只有4个段寄存器,所以,程序在任何时刻至多有4个正在使用的段可直接访问;在32位微机系统中,它有6个段寄存器,所以,在此环境下开发的程序最多可同时访问6个段。32位CPU有两个不同的工作方式:实方式和保护方式。在每种方式下,段寄存器的作用是不同的。有关规定简单描述如下: 实方式:前4个段寄存器CS、DS、ES和SS与先前CPU中的所对应的段寄存器的含义完全一致,内存单元的逻辑地址仍为段值:“偏移量”的形式。为访问某内存段内的数据,必须使用该段寄存器和存储单元的偏移量。保护方式:在此方式下,情况要复杂得多,装入段寄存器的不再是段值,而是称为”选择子”(Selector)的某个值。 5、数据寄存器 数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。对低16位数据的存取,不会影响高16位的数据。这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。 4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。寄存器AX和AL通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、除、输入/输出等操作,它们的使用频率很高;寄存器BX称为基地址寄存器(BaseRegister)。它可作为存储器指针来使用;寄存器CX称为计数寄存器(CountRegister)。在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数; 寄存器DX称为数据寄存器(DataRegister)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,但在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果,而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。
维库电子通,电子知识,一查百通!
已收录词条48237个