根据车牌的不同特征,可以采用不同的定位方法。目前车牌定位的方法很多,最常见的定位技术主要有基于边缘检测的方法、基于彩色分割的方法、基于小波变换的方法、基于遗传算法的方法、基于数学形态学的车牌定位和基于灰度图像纹理特征分析的方法等,在此对几种常用的定位算法进行简单的介绍。
车牌定位方法的出发点是利用车牌区域的特征来判断牌照,将车牌区域从整幅车辆图像中分割出来。车牌自身具有许多的固有特征,这些特征对于不同的国家是不同的。从人的视觉角度出发,我国车牌具有以下可用于定位的特征:
(1)车牌底色一般与车身颜色、字符颜色有较大差异;
(2)车牌有一个连续或由于磨损而不连续的边框;
(3)车牌内字符有多个,基本呈水平排列,在牌照的矩形区域内存在丰富的边缘,呈现规则的纹理特征;
(4)车牌内字符之间的间隔较均匀,字符和牌照底色在灰度值上存在较大的跳变,字符本身和牌照底内部都有比较均匀的灰度;
(5)不同图像中牌照的具体大小、位置不确定,但其长宽比在一定的变化范围内,存在1个值和1个最小值。
以上几种特征都是概念性的,各项特征单独看来都非车牌图像所独有,但将它们结合起来可以地确定车牌。在这些特征中,颜色、形状、位置特征最为直观,易于提取。纹理特征比较抽象,必须经过一定的处理或者转换为其他特征才能得到相应的可供使用的特征指标。通常文字内容特征至少需要经过字符分割或识别后才可能成为可利用的特征,一般只是用来判断车牌识别正确与否。
所谓“边缘”就是指其周围像素灰度有阶跃变化的那些像素的集合。“边缘”的两侧分属于两个区域,每个区域的灰度均匀一致,而这两个区域的灰度在特征上存在一定的差异。边缘检测的任务是精确定位边缘和抑制噪声。检测的方法有多种, 例如Roberts 边缘算子、Prewitt 算子、Sobel 算子以及拉普拉斯边缘检测。这些方法正是利用物体边缘处灰度变化剧烈这一特点来检测图像的边缘。各算子对不同边缘类型的敏感程度不同, 产生的效果也不同, 经过大量实验分析可知, Roberts边缘算子是一种利用局部方差算子寻找边缘的算子, 定位比较精确; Prewitt算子和Sobel算子对噪声有一定的抑制能力, 但不能完全排除伪边缘; 拉普拉斯算子是二阶微分算子, 对图像中的阶跃型边缘点定位准确且具有旋转不变性, 但容易丢失一部分边缘的方向信息, 同时抗噪能力较差。针对不同的环境和要求, 选择合适的算子来对图像进行边缘检测才能达到好的效果。具体定位流程如图1所示。
基于彩色分割的车牌定位方法由彩色分割和目标定位等模块组成,采用多层感知器网络对彩色图像进行分割,然后通过投影法分割出潜在的车牌区域。在进行彩色分割时采用神经网络模型,一般图像采用RGB三原色,但RGB三原色中两点的欧氏距离与颜色距离不成线性比例。为了更好地进行彩色分割,将RGB模式的彩色图像转化为HSI模式,即色调、饱和度和亮度,然后对输出图像的饱和度作调整。为了减少计算量,将彩色图像抽稀后再进行模式转化。同时,为了减少光照条件对图像分割产生的影响,采用对数方法进行彩色饱和度调整。然后对模式转化后的彩色图像进行彩色神经网络分割,根据车牌底色及长宽比等先验知识,采用投影法分割出合理的车牌区域。当获取的彩色图像质量较高时,尤其是车牌区域颜色与附近颜色差别较大时,准确率将有所下降。
该定位算法正确率较高,但由于采用了神经网络计算法,当区域颜色与附近颜色相似时,计算速度较慢。具体定位流程如图2所示。
维库电子通,电子知识,一查百通!
已收录词条48237个