粗糙度仪又叫表面粗糙度仪、表面光洁度仪、表面粗糙度检测仪、粗糙度测量仪、粗糙度计、粗糙度测试仪等多种名称。它具有测量精度高、测量范围宽、操作简便、便于携带、工作稳定等特点,可以广泛应用于各种金属与非金属的加工表面的检测,该仪器是传感器主机一体化的袖珍式仪器,具有手持式特点,更适宜在生产现场使用。外形采用拉铝模具设计,坚固耐用,抗电磁干扰能力显著,符合当今设计新趋势。
● 高精度电感传感器
● 可测量显示13个粗糙度参数
● 采用DSP(数字信号处理器)进行数据处理和控制,速度快,功耗低
● 机电一体化设计,体积小,重量轻,使用方便
● 高品质锂离子充电电池,容量高,无记忆效应,连续工作时间大于20小时
● 连接时代TA系列打印机,可以打印测量参数及轮廓
● 标准RS232接口,可与PC机通讯
● 可选配曲面传感器测量曲面,小孔传感器测量内孔孔壁,沟槽/深槽传感器测量沟槽底部或台阶的粗糙度
● 菜单操作方式
● 具有图形显示功能
● 传感器触针位置指示
● 带存储功能的自动关机
● 多语言工作方式选择
测量参数 |
Ra、Rz、Ry、Rq、Rt、Rp、Rv、Rmax、R3z、RSk、RS、RSm、Rmr |
测量范围 |
Ra:0.025-12.5μm |
显示范围 |
Ra、Rq:0.005-16μm,Rz、Ry、Rt、Rp、Rv、Rmax、R3z:0.02-160μm |
量程范围 |
±20μm、±40μm、±80μm |
显示分辨率 |
0.001μm |
滤波方式 |
RC、PC-RC、GAUSS、D-P |
取样长度 |
0.25mm、0.8mm、2.5mm、自动 |
评定长度 |
1L-5L(可选),L为取样长度 |
测量行程长度 |
3L-7L(可选) |
驱动行程长度 |
17.5mm/0.71inch |
最小驱动行程长度 |
1.3mm/0.052inch |
示值误差 |
≤±10% |
示值变动性 |
≤6% |
针尖角度 |
90° |
显示方式 |
128×64点阵液晶(带背光) |
工作环境 |
温度:0ºC- 40ºC,相对湿度:<90[%] |
重量 |
440g |
外型尺寸 |
140×52×48mm |
测量工件表面粗糙度时,将传感器放在工件被测表面上,由仪器内部的驱动机构带动传感器沿被测表面做等速滑行,传感器通过内置的锐利触针感受被测表面的粗糙度,此时工件被测表面的粗糙度引起触针产生位移,该位移使传感器电感线圈的电感量发生变化,从而在相敏整流器的输出端产生与被测表面粗糙度成比例的模拟信号,该信号经过放大及电平转换之后进入数据采集系统,DSP芯片将采集的数据进行数字滤波和参数计算,测量结果在液晶显示器上读出,也可在打印机上输出,还可以与PC机进行通讯。
针描法又称触针法。当触针直接在工件被测表面上轻轻划过时,由于被测表面轮廓峰谷起伏, 触针将在垂直于被测轮廓表面方向上产生上下移动,把这种移动通过电子装置把信号加以放大, 然后通过指零表或其它输出装置将有关粗糙度的数据或图形输出来。
采用针描法原理的表面粗糙度测量仪由传感器、驱动器、指零表、记录器和电感传感器是轮廓仪的主要部件之一,其工作原理见图2,在传感器测杆的一端装有金刚石触针,触针尖 端曲率半径r很小,测量时将触针搭在工件上,与被测表面垂直接触,利用驱动器以一定的 速度拖动传感器。由于被测表面轮廓峰谷起伏,触状在被测表面滑行时,将产生上下移动。此运动经支点使磁芯同步地上下运动,从而使包围在磁芯外面的两个差动电感线圈的电感量发生变化。图3为仪器的工作原理主框图。传感器的线圈与测量线路是直接接入平衡电桥的,线圈电感量的变化使电桥失 去平衡,于是就输出一个和触针上下的位移量成正比的信号,经电子装置将这一微弱电量的变化放大、 相敏检波后,获得能表示触针位移量大小和方向的信号。此后,将信号分成三路:一路加到指零表上, 以表示触针的位置,一路输至直流功率放大器,放大后推动记录器进行记录;另一路经滤波和平均表放大 器放大之后,进入积分计算器,进行积分计算,即可由指示表直接读出表面粗糙度Ra值。
图3 传统表面粗糙度测量仪工作原理框图指零表的作用反映铁芯在差动电感线圈中所处的位置。当铁芯处于差动电感线圈的中间位置时,指零表指针指示出零位,即保证处于电感变化的线性范围之内。所以,在测量之前,必须调整指零表,使其处于零位。经过噪声滤波和波度滤波以后,剩下来的就是与被测表面粗糙度成比例的信号,再经平均表放大器后,所输出的电流I与被测表面轮廓各点偏离中线的高度y的值成正比,然后经积分器完成的积计算,得出Ra值,由指零表显示出来。这种仪器适用于测定0.02-10μm的Ra值,其中有少数型号的仪器还可测定更小的参数值,仪器配有各种附件,以适应平面、内外圆柱面、圆锥面、球面、曲面、以及小孔、沟槽等形状的工件表面测量。测量迅速方便,测值精度高。
传统表面粗糙度测量仪存在以下几个方面的不足:
(1)测量参数较少,一般仅能测出Ra、Rz、Ry等少量参数; (2)测量精度较低,测量范围较小,Ra值的范围一般为0.02-10μm左右; (3)测量方式不灵活,例如:评定长度的选取,滤波器的选择等; (4)测量结果的输出不直观。造成上述几个方面不足的主要原因是:系统的可靠性不高,模拟信号的误差较大且不便于处理等。
一、机械加工制造业,主要是金属加工制造。粗糙度仪最初的产生就是为了检测机械加工零件表面粗糙度而生的。尤其是触针式粗糙度测量仪比较适用于质地比较坚硬的金属表面的检测。如:汽车零配件加工制造业、机械零部件加工制造业等等。这些加工制造行业只要涉及到工件表面质量的,对于粗糙度仪的检测应用是必不可少的。
二、非金属加工制造业,随着科技的进步与发展,越来越多的新型材料应用到加工工艺上,如陶瓷、塑料、聚乙烯,等等,现有些轴承就是用特殊陶瓷材料加工制作的,还有泵阀等是利用聚乙烯材料加工制成的。这些材料质地坚硬,某些应用可以替代金属材料制作工件,在生产加工过程中也需要检测其表面粗糙度。
三、随着粗糙度仪的技术和功能不断加强和完善,以及深入的推广和应用,越来越多的行业被发现会需求粗糙度的检测,除机械加工制造外,电力、通讯、电子、,如交换机上联轴器、集成电路半导体等生产加工过程中也需粗糙度的评定,甚至人们生活中使用的文具、餐具、人的牙齿表面都要用到表面粗糙度的检验。
测量
1、干涉法
干涉法是利用光波干涉原理来测量表面粗糙度。
2、针描法
针描法是利用触针直接在被测表面上轻轻划过,从而测出表面粗糙度的Ra值。
3、比较法
比较法是车间常用的方法。将被测表面对照粗糙度样板,用肉眼判断或借助于放大镜、比较显微镜比较;也可用手摸,指甲划动的感觉来判断被加工表面的粗糙度。此法一般用于粗糙度参数较大的近似评定。
4、光切法
光切法是利用"光切原理"来测量表面粗糙度。
测量工件表面粗糙度时,将传感器放在工件被测表面上,由仪器内部的驱动机构带动传感器沿被测表面做等速滑行,传感器通过内置的锐利触针感受被测表面的粗糙度,此时工件被测表面的粗糙度引起触针产生位移,该位移使传感器电感线圈的电感量发生变化,从而在相敏整流器的输出端产生与被测表面粗糙度成比例的模拟信号,该信号经过放大及电平转换之后进入数据采集系统,DSP芯片将采集的数据进行数字滤波和参数计算,测量结果在液晶显示器上读出,也可在打印机上输出,还可以与PC机进行通讯。
维库电子通,电子知识,一查百通!
已收录词条48243个