我们知道,光源同时具有热效应和辐射效应。对普通光源而言,由热效应所产生的压力比由单纯动量交换产生的辐射压力大几个数量级,因此很难获得足够的辐射压力。激光的出现改变了这一状况,使光的辐射压力得到充分体现。同时激光光束的截面分布具有简单确定的数学表达,便于进行理论处理,使光阱和光悬浮的研究成为可能。激光镊子是利用激光与物质间进行动量传递时的力学效应形成三维光学势阱。它的基本原理如图。
当一束强汇聚的高斯光场作用于透明粒子时,如果粒子的折射率n1大于周围介质的折射率n0,梯度力Fa, Fb 会把粒子推向光场的最强处(轴心). 在光束传播方向上光对粒子不仅会产生轴向的推力,还会产生逆轴向的拉力,从而实现捕获。这里光学捕获是通过透明介质微粒与光子发生动量交换而完成的。这与带电粒子受静电场库仑力或交变场的梯度力而实现的电动捕获不同,与金属粒子或超导体在磁场中的磁悬浮也不同。
1970年,美国电报电话公司贝尔实验室的阿什金教授采用一束高斯激光,成功地在垂直于光的传播方向上束缚了悬浮在水中的聚苯乙烯微粒,这一实验将辐射压的应用从原子量级扩展到了微米范围,奠定了光镊的研究基础。之后他又设计了双光束光学陷阱,初步实现了光镊的雏形。
1986年,他把单束激光引入高数值孔径物镜形成了三维光学势阱,证明光学势阱可以无损伤地操纵活体物质。目前所说的光镊即是这样一种三维全光学势阱。光镊对粒子无损伤,具有非接触性,作用力均匀,微米量级的精确定位,可选择特定个体,并可在生命状态下进行操作等特点,特别适用于对细胞和亚细胞层次上活体的研究,如对细胞或细胞器的捕获,分选与操纵,弯曲细胞骨架,克服布朗运动所引起的细菌旋转等。这也正是光镊得以在生物领域中被广泛应用,并显示出强大生命力和广阔应用前景的原因之一。正如其发明者所说,光镊"将细胞从它们的正常位置移去的能力,为我们打开了精确研究其功能的大门"。
系统应用
不论你是想寻求一个经济型的开放结构的光镊,英国Elliot光镊系统给你现有显微镜增添光学镊子功能,采购一个完全集成的电脑控制的多点光学镊子,或增加单点或多点的力值测量。我们都可以满足您的需求。我们交付完全可以开始他们的研究。标准系统包括:元件化的开放式结构光镊独立的,便携,台式单光束光镊工作站带商业显微镜整合的单光束光镊与商业显微镜集成的全电脑控制下的多点光镊用QPD测量单陷阱强度的力值测量配件利用照相机颗粒轨迹显示多陷阱刚度,多粒子径迹的力值测量配件。
应用:
细胞学
细胞粒子相互作用
单生物分子和生物聚合物
维库电子通,电子知识,一查百通!
已收录词条48237个