您好,欢迎来到维库电子市场网 登录 | 免费注册

色光谱
阅读:4697时间:2018-06-23 10:00:46

光波是由原子内部运动的电子产生的,各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同,研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学。

分光镜的构造原理

  分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理,它是由平行光管A、三棱镜P和望远镜筒B组成的,平行光管A的前方有一个宽度可以调节的狭缝S,它位于透镜L1的焦平面①处,从狭缝射入的光线经透镜L1折射后,变成平行光线射到三棱镜P上,不同颜色的光经过三棱镜沿不同的折射方向射出,并在透镜L2后方的焦平面MN上分别会聚成不同颜色的像(谱线),通过望远镜筒B的目镜L3,就看到了放大的光谱像,如果在MN那里放上照相底片,就可以摄下光谱的像,具有这种装置的光谱仪器叫做摄谱仪,

发射光谱

  发射光谱物体发光直接产生的光谱叫做发射光谱.发射光谱有两种类型:连续光谱和明线光谱.
  连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱.炽热的固体、液体和高压气体的发射光谱是连续光谱.例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱.
  只含有一些不连续的亮线的光谱叫做明线光谱.明线光谱中的亮线叫做谱线,各条谱线对应于不同波长的光.稀薄气体或金属的蒸气的发射光谱是明线光谱.明线光谱是由游离状态的原子发射的,所以也叫原子光谱.观察气体的原子光谱,可以使用光谱管,它是一支中间比较细的封闭的玻璃管,里面装有低压气体,管的两端有两个电极.把两个电极接到高压电源上,管里稀薄气体发生辉光放电,产生一定颜色的光.
  观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱.
  实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.彩图7就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构.

吸收光谱

  吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线(见彩图8.分光镜的分辨本领不够高时,只能看见一条暗线).这就是钠原子的吸收光谱.值得注意的是,各种原子的吸收光谱中的每一条暗线都跟该种原子的发射光谱中的一条明线相对应.这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光.因此,吸收光谱中的谱线(暗线),也是原子的特征谱线,只是通常在吸收光谱中看到的特征谱线比明线光谱中的少.

光谱分析

光谱分析由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定它的化学组成.这种方法叫做光谱分析.做光谱分析时,可以利用发射光谱,也可以利用吸收光谱.这种方法的优点是非常灵敏而且迅速.某种元素在物质中的含量达10-10克,就可以从光谱中发现它的特征谱线,因而能够把它检查出来.光谱分析在科学技术中有广泛的应用.例如,在检查半导体材料硅和锗是不是达到了高纯度的要求时,就要用到光谱分析.在历史上,光谱分析还帮助人们发现了许多新元素.例如,铷和铯就是从光谱中看到了以前所不知道的特征谱线而被发现的.光谱分析对于研究天体的化学组成也很有用.十九世纪初,在研究太阳光谱时,发现它的连续光谱中有许多暗线(参看彩图9,其中只有一些主要暗线).最初不知道这些暗线是怎样形成的,后来人们了解了吸收光谱的成因,才知道这是太阳内部发出的强光经过温度比较低的太阳大气层时产生的吸收光谱.仔细分析这些暗线,把它跟各种原子的特征谱线对照,人们就知道了太阳大气层中含有氢、氦、氮、碳、氧、铁、镁、硅、钙、钠等几十种元素.

光谱形式

  线状光谱
  由狭窄谱线组成的光谱。单原子气体或金属蒸气所发的光波均有线状光谱,故线状光谱又称原子光谱。当原子能量从较高能级向较低能级跃迁时,就辐射出波长单一的光波。严格说来这种波长单一的单色光是不存在的,由于能级本身有一定宽度和多普勒效应等原因,原子所辐射的光谱线总会有一定宽度(见谱线增宽);即在较窄的波长范围内仍包含各种不同的波长成分。原子光谱按波长的分布规律反映了原子的内部结构,每种原子都有自己特殊的光谱系列。通过对原子光谱的研究可了解原子内部的结构,或对样品所含成分进行定性和定量分析。
  带状光谱
  由一系列光谱带组成,它们是由分子所辐射,故又称分子光谱。利用高分辨率光谱仪观察时,每条谱带实际上是由许多紧挨着的谱线组成。带状光谱是分子在其振动和转动能级间跃迁时辐射出来的,通常位于红外或远红外区。通过对分子光谱的研究可了解分子的结构。
  连续光谱
  包含一切波长的光谱,赤热固体所辐射的光谱均为连续光谱。同步辐射源(见电磁辐射)可发出从微波到X射线的连续光谱,X射线管发出的轫致辐射部分也是连续谱。
  吸收光谱
  具有连续谱的光波通过物质样品时,处于基态的样品原子或分子将吸收特定波长的光而跃迁到激发态,于是在连续谱的背景上出现相应的暗线或暗带,称为吸收光谱。每种原子或分子都有反映其能级结构的标识吸收光谱。研究吸收光谱的特征和规律是了解原子和分子内部结构的重要手段。吸收光谱首先由J.V.夫琅和费在太阳光谱中发现(称夫琅和费线),并据此确定了太阳所含的某些元素。
  具体的元素光谱:红色代表硫元素,蓝色代表氧元素,而绿色代表氢元素。

维库电子通,电子知识,一查百通!

已收录词条48227