您好,欢迎来到维库电子市场网 登录 | 免费注册

原子荧光光度计
阅读:5672时间:2017-05-26 10:58:22

    原子荧光光度计利用惰性气体氩气作载气,将气态氢化物和过量氢气与载气混合后,导入加热的原子化装置,氢气和氩气在特制火焰装置中燃烧加热,氢化物受热以后迅速分解,被测元素离解为基态原子蒸气,其基态原子的量比单纯加热砷、锑、铋、锡、硒、碲、铅、锗等元素生成的基态原子高几个数量级。

基本介绍

    利用原子荧光谱线的波长和强度进行物质的定性与定量分析的方法。原子蒸气吸收特征波长的辐射之后,原子激发到高能级,激发态原子接着以辐射方式去活化,由高能级跃迁到较低能级的过程中所发射的光称为原子荧光。当激发光源停止照射之后,发射荧光的过程随即停止。 原子荧光可分为 3类:即共振荧光、非共振荧光和敏化荧光,其中以共振原子荧光最强,在分析中应用最广。共振荧光是所发射的荧光和吸收的辐射波长相同。只有当基态是单一态,不存在中间能级,才能产生共振荧光。非共振荧光是激发态原子发射的荧光波长和吸收的辐射波长不相同。非共振荧光又可分为直跃线荧光、阶跃线荧光和反斯托克斯荧光。直跃线荧光是激发态原子由高能级跃迁到高于基态的亚稳能级所产生的荧光。阶跃线荧光是激发态原子先以非辐射方式去活化损失部分能量,回到较低的激发态,再以辐射方式去活化跃迁到基态所发射的荧光。直跃线和阶跃线荧光的波长都是比吸收辐射的波长要长。反斯托克斯荧光的特点是荧光波长比吸收光辐射的波长要短。敏化原子荧光是激发态原子通过碰撞将激发能转移给另一个原子使其激发,后者再以辐射方式去活化而发射的荧光。
    根据荧光谱线的波长可以进行定性分析。在一定实验条件下,荧光强度与被测元素的浓度成正比。据此可以进行定量分析。 原子荧光光谱仪分为色散型和非色散型两类。两类仪器的结构基本相似,差别在于非色散仪器不用单色器。色散型仪器由辐射光源、单色器、原子化器、检测器、显示和记录装置组成。辐射光源用来激发原子使其产生原子荧光。可用连续光源或锐线光源,常用的连续光源是氙弧灯,可用的锐线光源有高强度空心阴极灯、无极放电灯及可控温度梯度原子光谱灯和激光。单色器用来选择所需要的荧光谱线,排除其他光谱线的干扰。原子化器用来将被测元素转化为原子蒸气,有火焰、电热、和电感耦合等离子焰原子化器。检测器用来检测光信号,并转换为电信号,常用的检测器是光电倍增管。显示和记录装置用来显示和记录测量结果,可用电表、数字表、记录仪等。 原子荧光光谱分析法具有设备简单、灵敏度高、光谱干扰少、工作曲线线性范围宽、可以进行多元素测定等优点。在地质、冶金、石油、生物医学、地球化学、材料和环境科学等各个领域内获得了广泛的应用。

基本原理

    原子荧光光谱法是通过测量待测元素的原子蒸气在辐射能激发下产生的荧光发射强度,来确定待测元素含量的方法。
    气态自由原子吸收特征波长辐射后,原子的外层电子从基态或低能级跃迁到高能级经过约10-8s,又跃迁至基态或低能级,同时发射出与原激发波长相同或不同的辐射,称为原子荧光。原子荧光分为共振荧光、直跃荧光、阶跃荧光等。
    发射的荧光强度和原子化器中单位体积该元素基态原子数成正比,式中:I f为荧光强度;φ为荧光量子效率,表示单位时间内发射荧光光子数与吸收激发光光子数的比值,一般小于1;Io为激发光强度;A为荧光照射在检测器上的有效面积;L为吸收光程长度;ε为峰值摩尔吸光系数;N为单位体积内的基态原子数。
    原子荧光发射中,由于部分能量转变成热能或其他形式能量,使荧光强度减少甚至消失,该现象称为荧光猝灭。
    分析方法
    物质吸收电磁辐射后受到激发,受激原子或分子以辐射去活化,再发射波长与激发辐射波长相同或不同的辐射。当激发光源停止辐照试样之后,再发射过程立即停止,这种再发射的光称为荧光;若激发光源停止辐照试样之后,再发射过程还延续一段时间,这种再发射的光称为磷光。荧光和磷光都是光致发光。
    原子荧光光谱分析法具有很高的灵敏度,校正曲线的线性范围宽,能进行多元素同时测定。这些优点使得它在冶金、地质、石油、农业、生物医学、地球化学、材料科学、环境科学等各个领域内获得了相当广泛的应用。
    优点
    有较低的检出限,灵敏度高。特别对Cd、Zn等元素有相当低的检出限,Cd可达0.001ng·cm-3、Zn为0.04ng·cm-3。现已有2O多种元素低于原子吸收光谱法的检出限。由于原子荧光的辐射强度与激发光源成比例,采用新的高强度光源可进一步降低其检出限。
    干扰较少,谱线比较简单,采用一些装置,可以制成非色散原子荧光分析仪。这种仪器结构简单,价格便宜。
    分析校准曲线线性范围宽,可达3~5个数量级。
    由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。

光度计结构

    原子荧光光度计分为色散型和非色散型两类。两类仪器的结构基本相似,差别在于非色散仪器不用单色器。色散型仪器由辐射光源、单色器、原子化器、检测器、显示和记录装置组成,非色散仪器没有单色器。荧光仪与原子吸收仪相似,但光源与检测部件不在一条直线上,而是90°直角,而避免激发光源发射的辐射对原子荧光检测信号的影响。
    激发光源
    用来激发原子使其产生原子荧光。光源分连续光源和锐线光源。连续光源一般采用高压氙灯,功率可高达数百瓦。这种灯测定的灵敏度较低,光谱干扰较大,但是采用一个灯即可激发出各元素的荧光。常用的锐线光源为脉冲供电的高强度空心阴极灯、无电极放电灯及70年代中期提出的可控温度梯度原子光谱灯。采用线光源时,测定某种元素需要配备该元素的光谱灯。由公式 ⑵ 可以看出,原子荧光的强度If与激发光源辐射强度I0成比例,因此原子荧光光度计都采用新的高强度光源提高激发光源辐射强度,I0提高1~2个数量级,进一步降低仪器的检出限。
    单色器
    产生高纯单色光的装置,其作用为选出所需要测量的荧光谱线,排除其他光谱线的干扰。单色器有狭缝、色散元件(光栅或棱镜)和若干个反射镜或透镜所组成,色散系统对分辨能力要求不高,但要求有较大的集光本领。使用单色器的仪器称为色散原子荧光光度计;非色散原子荧光分析仪没有单色器,一般仅配置滤光器用来分离分析线和邻近谱线,降低背景。非色散型仪器的滤光器非色散型仪器的优点是照明立体角大,光谱通带宽,荧光信号强度大,仪器结构简单,操作方便,价格便宜。缺点是散射光的影响大。
    原子化器
    将被测元素转化为原子蒸气的装置。可分为火焰原子化器和电热原子化器。火焰原子化器是利用火焰使元素的化合物分解并生成原子蒸气的装置。所用的火焰为空气-乙炔焰、氩氢焰等。用氩气稀释加热火焰,可以减小火焰中其他粒子,从而减小荧光猝灭(受激发原子与其它粒子碰撞,部分能量变成热运动与其他形式的能量,因而发生无辐射的去激发,使荧光强度减少甚至消失,该现象称为荧光猝灭)现象。电热原子化器是利用电能来产生原子蒸气的装置。电感耦合等离子焰也可作为原子化器,它具有散射干扰少、荧光效率高的特点。

维库电子通,电子知识,一查百通!

已收录词条48243