您好,欢迎来到维库电子市场网 登录 | 免费注册

无线传感器网络
阅读:18801时间:2010-12-08 10:06:04

  无线传感器网络作为计算、通信和传感器三项技术相结合的产物,是一种全新的信息获取和处理技术。由于近来微型制造的技术、通讯技术及电池技术的改进,促使微小的传感器可具有感应、无线通讯及处理信息的能力。此类传感器不但能够感应及侦测环境的目标物及改变,并且可处理收集到的数据,并将处理过后的资料以无线传输的方式送到数据收集中心或基地台。这些微型传感器通常由传感部件、数据处理部件和通信部件组成,随机分布的集成有传感器、数据处理单元和通信模块的微小节点通过自组织的方式构成网络。借助于节点中内置的形式多样的传感器测量所在周边环境中的热、红外、声纳、雷达和地震波信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等众多我们感兴趣的物质现象。在通信方式上,虽然可以采用有线、无线、红外和光等多种形式,但一般认为短距离的无线低功率通信技术最适合传感器网络使用,一般称作无线传感器网络。

结构

  传感器网络系统通常包括传感器节点、汇聚节点和管理节点。

  大量传感器节点随机部署在监测区域内部或附近,能够通过自组织方式构成网络。传感器节点监测的数据沿着其他传感器节点逐跳地进行传输,在传输过程中监测数据可能被多个节点处理,经过多跳后路由到汇聚节点,通过互联网或卫星到达管理节点。用户通过管理节点对传感器网络进行配置和管理,发布监测任务以及收集监测数据。

  传感器节点

  通常是一个微型的嵌入式系统,它的处理能力、存储能力和通信能力相对较弱,通过携带能量有限的电池供电。

无线传感器网络结构

  从网络功能上看,每个传感器节点兼顾传统网络节点的终端和路由器双重功能,除了进行本地信息收集和数据处理外,还要对其他节点转发来的数据进行存储、管理和融合等处理,同时与其他节点协作完成一些特定任务。

  汇聚节点

  汇聚节点的处理能力、存储能力和通信能力相对比较强,它连接传感器网络与Internet 等外部网络,实现两种协议栈之间的通信协议转换,同时发布管理节点的监测任务,并把收集的数据转发到外部网络上。

  汇聚节点既可以是一个具有增强功能的传感器节点,有足够的能量供给和更多的内存与计算资源,也可以是没有监测功能仅带有无线通信接口的特殊网关设备。

节能

  自动配置的无线传感器网络在民用和军用方面具有极高的价值,可以在大范围内用于收集、处理和发布复杂的环境数据。无线传感器网络中的节点一般采用电池供电,可以使用的电量非常有限,而且对于有成千上万节点的无线传感器网络来说,对电池的更换是非常困难的甚至是不可能的。但是无线传感器网络的生存时间却要求长达数月甚至数年,因此,如何在不影响功能的前提下,尽可能节约无线传感器网络的电池能量成为无线传感器网络软硬件设计中的核心问题,也是当前国内外研究机构关注的焦点。

  节点组成及能耗分析

  规范的无线传感器节点结构如图1所示。节点由四部分组成:(1)由微处理器或微控制器构成的计算子系统;(2)用于无线通信的短距离无线收发电路,即通信子系统;(3)将节点与物理世界联系起来,由一组传感器和激励装置构成的传感子系统;(4)能量供应子系统,包括电池和AC-DC转换器。

无线传感器节点结构

  图1 无线传感器节点结构

  1)  计算子系统

  微处理器(MicroController Unit, MCU)负责控制传感器、执行通信协议和处理传感数据的算法。MCU的选择会对节点的电池消耗带来很大的影响,比如,Intel的StrongARM常用于高端领域,在执行指令时功耗达到400mW,而ATmega103L AVR的功耗就只有16.5 mW,不过提供的性能也要弱的多。出于电源管理的目的,MCU通常有活跃、空闲和睡眠等多种操作模式,每种模式有不同的电源消耗。比如,StrongARM在空闲模式功耗为50 mW,而在睡眠模式时只有0.16 mW。在不同操作模式之间切换也有电源和延迟开销,因此,不同的操作模式、模式之间的切换和MCU在每种模式的时长对整个节点的能量消耗有很大的影响。

  2)通信子系统

  影响无线收发电路功耗的因素很多,包括节点采用的调制模式、数据率、发射功率和操作周期等。通常,无线收发电路可以工作在四种状态,即发送、接收、空闲和睡眠状态。空闲状态也具有很高的功耗,几乎与接收模式不相上下,所以在无线收发电路处于空闲状态时,应该尽可能将其关闭(即置于睡眠状态)。

  3)传感子系统

  包括一组传感和激励装置,将周围环境的物理现象转换成电信号,根据输出可以分为模拟和数字两类。在无线传感器中,能量消耗来自多个部分,包括(1)信号采样以及物理信号到电信号的转换(2)信号调制(3)信号的模-数转换。

  4) 无线传感器网络节点能耗分析

  现在分析无线传感器节点的能耗。表1是Rockwell的WINS项目中无线传感器节点的能耗数据,表2是MEDUSA-II项目中节点的能耗数据,从中可以看出:

  采用低功耗模块、在性能与耗电量之间进行折中对系统整体功耗影响巨大。

  节点的能耗在很大程度上取决于各个组成部分的工作状态。

  由于传输距离很短,接收时的能耗可能比发送时还大。

  无线收发电路在空闲状态和接收状态时的耗电量相差无几。

WINS项目中无线传感器节点的能耗数据

  表1 WINS项目中无线传感器节点的能耗数据

MEDUSA-II项目中无线传感器节点的能耗数据

  表2 MEDUSA-II项目中无线传感器节点的能耗数据

  单个节点的节能优化

  在分析了无线传感器节点的组成和能耗特点之后,让我们看看在单个节点上可以采取哪些措施来节约能耗。

  1) 节能计算

  除了在节点设计中采用低功耗硬件之外,通过动态电源管理(Dynamic Power Management, DPM)等技术使系统各个部分都运行在节能模式下也可以节约大量的能量。最常用的电源管理策略是关闭空闲模块,在这种状态下,无线传感器节点或其一部分将被关闭或者处于低功耗状态,直到有感兴趣的事件发生。DPM技术的核心问题是状态调度策略,因为不同的状态有不同的功耗特征,而且状态切换也有能量和时间开销。

  在活跃状态下,则可以采取动态电压调整(Dynamic Voltage Scaling, DVS)技术来节约能量。在大多数无线传感器节点上,计算负载是随时间变化的,因此并不需要微处理器所有时刻都保持峰值性能。DVS技术就是利用了这一点,动态改变微处理器的工作电压和频率使其刚好满足当时的运行需求,从而在性能和能耗之间取得平衡。

  2) 节能软件

  如果操作系统、应用层和网络协议等系统软件针对能耗进行了专门的优化,那么无线传感器网络的生存时间也能得到有效的延长。

  在操作系统中进行动态电源管理和动态电压调整是最合适的,因为操作系统可以获取所有应用程序的性能需求并能直接控制底层硬件资源,从而在性能和能耗控制之间进行必要的折衷。操作系统的核心是任务调度器,负责调度给定的任务集合使其满足各自的时间和性能需求,通过在任务调度中考虑节能问题可,系统生存时间可得到明显的延长。

  鉴于传输中不可避免的数据丢失,无线传感器网络应能根据当时的网络环境提供不同精度的数据,从而获得一定的弹性。另一方面,监测对象的属性是随时间变化的,从而导致网络中的计算和通信需求也随之改变。这样,我们就可以在实时调度算法中进行某种程度的预测,对能耗进行主动式的管理。另外,应用层可以设计成将主要的计算任务及早执行,然后在算法正常结束前提前中止,这样就能在对数据精度影响不大的情况下节约能耗。 {{分页}}

  3) 无线收发电路能耗管理

  虽然嵌入式处理器的电源管理已经得到深入研究,但无线收发系统的节能设计却研究得不够。由于无线通信占了整个无线传感器网络能耗主要部分,因此对无线收发系统的能耗管理非常重要。

  无线收发系统电源消耗主要来自两部分,取决于传输距离和调制参数的射频部分以及进行频率合成、滤波等操作的基带电路部分。无线收发系统节能设计很复杂,因为射频部分和基带电路部分的电源开销是相当的,降低射频部分的速率反而会导致能耗的增加。另外要考虑的问题是,无线收发系统的初始化开销很大,这一切都加大了无线收发系统节能设计的难度。关于无线通信方面的能耗优化将在下一节详细讨论。

  4) 节能报文转发

  除了发送自身感知的数据之外,每个无线传感器节点又都是路由器,需要为其它节点转发报文。在典型的无线传感器网络环境下,无线传感器节点接收的大部分报文(大概有65%)需要转发给其它节点。通常情况下,无线传感器节点将绝大部分协议处理功能交由MCU执行。这样,不管其最终目的地是哪里,每个接收到的报文都会经过相同的处理步骤到达计算子系统并得到处理,导致不必要的能耗开销。利用智能无线收发系统,需要转发的报文可以直接在通信子系统标识和转发,甚至在计算子系统处于睡眠状态时也能正常工作。

  3 无线通信的节能优化

  与单个节点能耗管理类似,在节点间通信过程中考虑节能措施同样对提高整个系统的电源使用效率有重要作用,而且,使通信过程对能耗敏感可以将节能优化的范围从单个节点扩展到参与通信的多个节点。

  1) 调制模式

  在无线传感器节点间的无线链路上使用的射频技术对无线通信的能量消耗也有重要影响。调制模式的选择决定了无线链路在总体能耗与灵敏度、延迟等方面的平衡。

  调制级别直接影响功率放大器的能耗,与DVS类似,根据实际需求动态改变调制级别是节约能耗的有效手段。由于无线收发电路的启动开销较大,因而每次发送报文的长度越大越好,这样可以将启动开销平摊到更多的数据上,但将数据积累到一定长度再发送对信息交换的延迟有影响,需要在两者之间进行平衡。

  2) 链路层优化

  负责错误检测和纠正的链路层影响报文的发送次数,从而影响系统功耗,特别是对于与网关节点等远距离通信而言。对给定的误码率(Bit Error Rate, BER),错误控制机制可以减少发送报文消耗的能量,但相应的增加了发送者和接收者的处理能耗。总的来说,链路层技术在降低能耗中所起的作用是间接的,好的错误控制模式可以降低报文重传次数,从而节约收发两端的能耗。

  4 整个网络的节能优化

  ,让我们看看从整个网络的角度,可以采取哪些措施进行能耗优化。

  1) 流量分发

  对整个无线传感器网络而言,需要从全局上考虑如何将流量从数据源传递到目的地,这里的重要问题是如何在源和目的地之间找到一条节能的多跳路由。节能路由是在普通的路由协议基础上,考虑相关的能耗因素,引入新的与电源消耗有关的衡量指标,实现能耗的节约,这方面已经有很多研究成果。

  比如,最简单的节能路由协议是最少能量路由,即寻找一条能耗的路由,通过它传送数据。但这样未必能延长网络的生存时间,因为某些处于关键位置的节点可能被过度使用而导致电源过早耗尽。为避免这种情况,最小路由使得节点的剩余电量尽可能多,即化节点的最小剩余电量。最小路由更多的考虑了电池的剩余电量,而最少能量路由考虑的是某次通信需要消耗的电量,一个很自然的改进思路是可以将两种方法结合起来,定义一个电源开销函数,综合考虑两种策略。

  2) 拓扑管理

  在典型的无线传感器网络部署中,节点密度都比较高,因为提高节点密度可以提高结果的精确度,但如果系统生存时间更重要的话,就可以对网络拓扑进行管理,利用相对较少的节点进行跟踪。这样,除了减少计算复杂度之外,也降低了通信开销,因为没有参与跟踪的节点不会发送数据。如果硬件支持可变发射功率的话,采用低的发射功率也能够降低网络电源开销,同时缓解共享空间信道的竞争,提高网络容量。拓扑控制有专门的讨论,这里就不多说了。

  3) 计算和通信的折衷

  除了智能的路由和拓扑管理协议,缩减数据流长度也是有效的节能手段。在无线传感器网络中,由于节点的高密度,使得同一时间被多个微传感节点同时感知并捕获处理,导致了数据采集的冗余性。在选定节点将一定区域内节点的数据进行汇聚或者融和,然后再将结果传送出去,不但可以提高事件/数据监测的可靠性,也可有效降低通信流量,从而节约能耗。

  5  结束语

  作为极具潜力的一种技术,无线传感器网络在未来几年必将得到广泛的应用,而由于节能在无线传感器网络设计中所处的核心地位,节能技术水平将伴随着无线传感器网络的发展而不断提高。未来,节能技术的研究将进一步与无线传感器网络的特定应用联系起来,针对不同应用进行专门的优化。同时,软硬件整合设计、跨层网络协议设计等一体化节能设计思路将得到广泛应用。

技术中的关键性问题

  一、引言

  无线传感器网络是一种独立出现的计算机网络,它的基本组成单位是节点,这些节点集成了传感器、微处理器、无线接口和电源四个模块。传统的计算机网络技术中业已成熟的解决方案可以借鉴到无线传感器网络中来。但是基于无线传感器网络自身的用途和优点,开发专用的通信协议和路由算法已经成为了当前无线传感器网络领域内急待研究的课题。

  二、无线传感器网络的特点

  1、 无线传感器网络包括了大面积的空间分布

  比如在军事应用方面,可以将无线传感器网络部署在战场上跟踪敌人的军事行动,智能化的终端可以被大量地装在宣传品、子弹或炮弹壳中,在目标地点撒落下去,形成大面积的监视网络。

  2、 能源受限制

  网络中每个节点的电源是有限的,网络大多工作在无人区或者对人体有伤害的恶劣环境中,更换电源几乎是不可能的事,这势必要求网络功耗要小以延长网络的寿命,而且要尽可能的节省电源消耗。

  3、 网络自动配置,自动识别节点

  这包括自动组网、对入网的终端进行身份验证、防止非法用户入侵。相对于那些布置在预先指定地点的传感器网络而言,无线传感器网络可以借鉴ad hoc方式来配置,当然前提是要有一套合适的通信协议保证网络在无人干预情况下自动运行。

  4、 网络的自动管理和高度协作性

  在无线传感器网络中,数据处理由节点自身完成,这样做的目的是减少无线链路中传送的数据量,只有与其他节点相关的信息才在链路中传送。以数据为中心的特性是无线传感器网络的又一个特点,由于节点不是预先计划的,而且节点位置也不是预先确定的,这样就有一些节点由于发生较多错误或者不能执行指定任务而被中止运行。为了在网络中监视目标对象,配置冗余节点是必要的,节点之间可以通信和协作,共享数据,这样可以保证获得被监视对象比较全面的数据。

  对用户来说,向所有位于观测区内的传感器发送一个数据请求,然后将采集的数据送到指定节点处理,可以用一个多播路由协议把消息送到相关节点,这需要一个的地址表,对于用户而言,不需要知道每个传感器的具体身份号,所以可以用以数据为中心的组网方式。

  5、与移动ad hoc网络的区别

  无线传感器网络作为一种分布式传感器网络,和移动ad hoc网络有相似点,但又有很多不同。移动ad hoc网络可以用于没有无线基础设施存在或出于费用和安全方面的考虑不方便设置无线基础设施的场合,而传感器很多时候被布置在近地环境中,地波吸收现象不能被忽视,并且高密度布置的传感器网络中的多用户接口也造成了很高的误比特率。作为移动通信的两种基本组网模式之一,移动ad hoc网络中的传输模型是典型的多对多式,而传感器网中的传输模型更偏向于分层次模型(多对一传输)。一般来说,无线传感器网络的节点比典型的移动终端或手持设备有更多的资源受限要求,但对于计算的要求则是可有可无的,当需要执行计算任务时,如果通信成本比计算成本低,计算任务就被送到中心节点去执行。

  三、无线传感器网络中的关键性问题

  1、 网络安全协议问题

  传感器网络受到的安全威胁和移动ad hoc网络所受到的安全威胁不同,所以现有的网络安全机制不适合此领域,需要开发针对无线传感器网络的专门协议。

  一种思想是从维护路由安全的角度出发,寻找尽可能安全的路由以保证网络的安全。文献[1]指出,如果路由协议被破坏导致传送的消息被篡改,那么对于应用层上的数据包来说没有任何的安全性可言。文中介绍了一种方法叫“有安全意识的路由”(SAR),其思想是找出真实值和节点之间的关系,然后利用这些真实值去生成安全的路由。该方法解决了两个问题,即如何保证数据在安全路径中传送和路由协议中的信息安全性。文中假设两个军官利用按需距离矢量路由(Ad Hoc On Demand Distance Vector Routing,AODV)协议通过ad hoc网络来通信,他们的通信基于Bell-La安全模型(PadulaBell-La Padula Confidentiality Model) [2],这种模型中,当节点的安全等级达不到要求时,其就会自动的从路由选择中退出以保证整个网络的路由安全。文献[3]指出,可以通过多径路由算法改善系统的稳健性(robustness),数据包通过路由选择算法在多径路径中向前传送,在接收端内通过前向纠错技术得到重建。无线传感器网络中传感器的数量众多并且功能有限,移动ad hoc网络中的路由方案不能直接应用到无线传感器网络中,所以该文给出了一种网状多径路由协议。此协议中应用了选择性向前传送数据包和端到端的前向纠错解码技术,配合适合传感器网络的网状多径搜索机制,能减少信号开支(signaling overhead),简化节点数据库,增大系统的吞吐量,相对数据包复制或者有限泛洪法来说,这种方法消耗更少的系统资源(比如信道带宽和电能)。

  另一种思想是把着重点放在安全协议方面,在此领域也出现了大量的研究成果。在文献[4]中,作者假定传感器网络的任务是为政要人员提供安全保护的,提供一个安全解决方案将为解决这类安全问题带来一个普适的模型。在具体的技术实现上,先假定基站总是正常工作的,并且总是安全的,满足必要的计算速度、存储器容量,基站功率满足加密和路由的要求;通信模式是点到点,通过端到端的加密保证了数据传输的安全性;射频层总是正常工作。基于以上前提,典型的安全问题可以总结为:

  (1)信息被非法用户截获;

  (2)一个节点遭破坏;

  (3)识别伪节点;

  (4)如何向已有传感器网络添加合法的节点。

  作者提出的方案不采用任何的路由机制。在此方案中,每个节点和基站分享一个的64位密匙Keyj和一个公共的密匙KeyBS,当节点和基站距离超出了预定距离时,网络会在节点和基站之间选择一个节点作为媒介节点进行接力;发送端会对数据进行加密,接收端接收到数据后根据数据中的地址选择相应的密匙对数据进行解密。这种双加密方式可以防止暴露节点数目和地址,也可以防止数据被非法截获,即使个别节点被破译,也只有它自己的密匙泄漏,整个网络仍然可以正常工作。文献[5]中介绍了无线传感器网络中的两种专用安全协议:SNEP(Sensor Network Encryption Protocol)和?;TESLA。SNEP的功能是提供节点到接收机之间数据的鉴权、加密、刷新,?;TESLA的功能是对广播数据的鉴权。

  2、 大规模传感器网络中的节点移动性管理

  这个问题实质上就是没有无线基础设施的无线传感器网络中的节点查询问题。最简单的资源查询方式是全局泛洪法,但是对于资源有限的无线传感器网络不适用,因此在设计工作中应该尽量避免使用全局泛洪法。扩展环搜索法(expanding ring search)用增加生存时间(Time-To-Live, TTL)的方式重复泛洪,这种方式和由此派生出来的方式也不适合无线传感器网络。在改善泛洪法的效率方面,文献[6]中提出的方案是通过减少查询每个节点时出现的多余消息去减少泛洪法固有的冗余,在没有出现明显的冗余情况下,这种方案对提高效率没有太多贡献。在ad hoc网络中,查询节点是通过基于簇(clusters)和界标(landmarks)的层次表来实现的,这种方式需要在节点之间设置复杂的协调机制,当节点移动时或者簇头(cluster-head)或界标失败时,层次表需要重新配置。而且,通常簇头会成为一个瓶颈,所以我们通常避免这种分层次的协调表,也避免使用簇头。

  GLS[7]中提出的技术是基于一种所有节点都已知的网络网格图。节点使用位置服务器保存它们的位置,并用一种基于ID号的算法去更新它们的位置,当节点寻找指定ID号的节点位置时,也用这种算法去服务器寻找目标节点的位置。对于知道网络的网格图和它们自己的位置并且知道目标节点的ID号的节点,这种方法是一个好方法。

  文献[8]中介绍了一种针对大规模移动传感器网络的查询方法,这种方法借用了小世界(small worlds)的概念,利用节点的移动性去提高查询效率,并引入了关联(contacts)的概念。其工作原理是首先在相邻节点间建立关联,当它们移动时,再关联新的相邻节点,这样提高了查询的效率。与传统的路由查询方式不同,这种设计基本目标不是去优化路由或者响应延时,而是去减少通信的系统开销,这一点在能量受限的环境中非常重要,特别是对于传感器数量众多的网络中的一次性查询(通信的生存时间很短)。文中给出的协议是可升级的(scalable)、自动配置的,非常适应节点的移动性要求。仿真结果显示它比边缘泛洪法提高效率60-70%,比泛洪法提高效率80-90%,比扩展环搜索法则有更大的改善。

  针对无线传感器网络中的分布式定位,文献[9]比较了三种定位算法:ad hoc、鲁棒定位、N跳多向法(N-hop multilateration)。具体选择哪种算法要取决于某些网络参数,比如差错分布和连通性等。

  3、 网络的自动配置和自动康复和维持系统能量有效性

  无线传感器网络被布置在无人值守的环境中时,更换能源几乎不可能,为了节约能源,发射功率要尽可能小,传输距离要短,节点间通信需要中间节点作为中继。在地震救灾或者是无人飞行器中,网络的自动配置和自动康复功能显得异常重要,而大规模的多跳无线传感器网络系统的可测量性(scalability)也是一个关键问题。实现可测量性的一种方法是“分而治之(divide and conquer)”,或者说是分层控制(hierarchical),即用某种簇标准将网络节点分成簇组(clusters),在每个簇中选出一个作为簇头(leader),它在比较高的层次上代表本簇;同样的机制也应用到簇头中,使之形成一个层次,这个层次中,每个级别应用当地控制(local control)去实现某个全局目标。大多数无线网络中的分类思想认为网络与地理位置无关,分类的标准是簇里的节点数量和簇间的逻辑直径(相对于地理直径而言)。但是,当簇头(cluster leader)和簇内其它节点间的链路很长,相邻簇间地理位置交迭很大,且不同的簇间路由消息载荷(routing traffic load)不平衡时,一个非簇头(non-leader)节点和它的簇头节点之间通过它们之间仅有的长链路通信将要消耗更多的能量,并且相邻簇间的并行通信冲突频发,簇间能量消耗不平衡,由此带来的结果是网络的寿命和通信质量与有效性都大幅减小。因此,为了节约能量和改善通信质量和有效性,在设计簇算法时,簇的地理半径应该考虑。文献[10]提出,在传感器节点内用一种简单的细胞聚类结构去构成路由协议,这样可以维持一种可测量的能量有效的系统,其关键的问题是使这种细胞簇结构具有自动康复性。作者针对大规模多跳传感器网络的自动配置和自动康复提出了一种分布式算法,这种算法可以保证网络节点在二维空间里自动配置成细胞簇结构,其细胞单元有紧凑的地理半径,细胞单元之间的交叠也很小。这种结构在各种扰动下是自动康复的,比如节点加入、离开、死亡、移动、被敌方捕获等。文献[11]给出了一种针对簇的分布式算法LEACH,它是通过全局上重复簇操作来处理扰动的,但这种算法既不能保证系统中簇的定位也不能保证簇的数量。文献[12]给出了另外一种簇算法,它仅考虑了簇的逻辑半径,而不考虑地理半径,当簇间存在比较大的交迭时,这种方法会降低无线传输的有效性。另外,它的康复不在本地处理,而是依赖于消息在整个系统中的多次循环。文献[13]中给

  出了一种基于访问的簇算法,这种算法注重簇的稳定性,不考虑簇的大小,要求每个节点都有全球定位系统(GPS)的支持。

  4、 系统功耗问题

  无线传感器网络应用于特殊场合时,电源不可更换,因此功耗问题显得至关重要。

  在系统的功耗模型中,我们最关心的是:

  (1) 微控制器的操作模式(休眠模式、操作模式、,潜在的减慢时钟速率等),无线前端的工作模式(休眠、空闲、接收、发射等);

  (2)在每种模式中,每个功能块的功耗量,及它与哪些参数有关;

  (3)在发射功率受限的情况下,发射功率和系统功耗的映射关系;

  (4)从一种操作模式转换到另外一种操作模式(假设可以直接转换)的转换时间及其功耗;

  (5)无线调制解调器的接收灵敏度和输出功率;

  (6)附加的品质因数(如发射前端的温漂和频稳度、接收信号场强指示(RSSI)信号的标准等)。

  基于以上考虑,文献[14]提出了一种自组织低功耗网络的协议i-Beans,并具体说明了此网络的功耗。比如,用一个220mAh的小纽扣电池供电,网络的平均消耗电流是100?;A,取样率是每秒1次,则电池可以持续80天;如果抽样率是每两分钟一次,平均消耗电流降到1.92?;A,则电池寿命可以延长到13.1年。

  为了克服远程无线传感器网络面临的电池工作时间短的问题,美国Millennial Net公司已经将其i-Bean无线技术与来自新兴公司Ferro Solutions的“能量获得(energy harvesting)”技术结合在一起,双方最近展示了一个靠感应振荡能量转换器工作的i-Bean无线发射机。这种转换器能由在50mg至100mg力作用下的28Hz至30Hz振荡产生1.2mV至3.6mV的电压,并允许在30m距离上以115Kb/s速率发送数据(无电池)。该公司还与其他公司合作开发太阳能电池板来给无线传感器供电。

  在能量优化研究方面,西安交通大学的黄进宏等在文献[15]中提出了一种基于能量优化的无线传感网络自适应组织结构和协议ALEP。与传统的无线微传感器网络协议相比,ALEP更加充分地考虑到实际应用。它将一种高效能量控制算法引入组网协议,提高了网络的能量利用率,显着延长了无线网络的生命周期,增强了网络的健壮性。通过对ALEP协议进行OPNET仿真,结果显示该协议与传统模式的无线微传感器网络协议相比,在传送相同的数据量的条件下有更高效的能量特性和信息传输特性。

  四、结束语

  虽然无线传感器网络的应用前景十分美好,但由于当前若干技术难题,还不能走向广泛应用。研究者们在将MEMS与其它电子器件集成到单一芯片的过程中遇到了严峻的挑战。文中提到的各种算法还有待于在工程实现中去检验它的实用性。

安全问题及对策

  1.引言

  无线传感器网络WSN(WirelessSensorNetwork)是一种自组织网络,通过大量低成本、资源受限的传感节点设备协同工作实现某一特定任务。

  它是信息感知和采集技术的一场革命,是21世纪最重要的技术之一。它在气候监测,周边环境中的温度、灯光、湿度等情况的探测,大气污染程度的监测,建筑的结构完整性监控,家庭环境的异常情况,机场或体育馆的化学、生物威胁的检测与预报等方面,WSN将会是一个经济的替代方案,有着广泛的应用前景。

  传感器网络为在复杂的环境中部署大规模的网络,进行实时数据采集与处理带来了希望。但同时WSN通常部署在无人维护、不可控制的环境中,除了具有一般无线网络所面临的信息泄露、信息篡改、重放攻击、拒绝服务等多种威胁外,WSN还面临传感节点容易被攻击者物理操纵,并获取存储在传感节点中的所有信息,从而控制部分网络的威胁。用户不可能接受并部署一个没有解决好安全和隐私问题的传感网络,因此在进行WSN协议和软件设计时,必须充分考虑WSN可能面临的安全问题,并把安全机制集成到系统设计中去。只有这样,才能促进传感网络的广泛应用,否则,传感网络只能部署在有限、受控的环境中,这和传感网络的最终目标——实现普遍性计算并成为人们生活中的一种重要方式是相违背的。

  一种好的安全机制设计是建立在对其所面临的威胁、网络特点等的深刻分析基础之上的,传感网络也不例外,本文将深入分析无线传感器网络特点以及其所可能面临的安全威胁,并对其相应的安全对策进行了研究和探讨。

  2.传感器网络特点分析

  WSN是一种大规模的分布式网络,常部署于无人维护、条件恶劣的环境当中,且大多数情况下传感节点都是一次性使用,从而决定了传感节点是价格低廉、资源极度受限的无线通信设备[2],它的特点主要体现在以下几个方面:(1)能量有限:能量是限制传感节点能力、寿命的最主要的约束性条件,现有的传感节点都是通过标准的AAA或AA电池进行供电,并且不能重新充电。(2)计算能力有限:传感节点CPU一般只具有8bit、4MHz~8MHz的处理能力。(3)存储能力有限:传感节点一般包括三种形式的存储器即RAM、程序存储器、工作存储器。RAM用于存放工作时的临时数据,一般不超过2k字节;程序存储器用于存储操作系统、应用程序以及安全函数等,工作存储器用于存放获取的传感信息,这两种存储器一般也只有几十k字节。(4)通信范围有限:为了节约信号传输时的能量消耗,传感节点的RF模块的传输能量一般为10mW到100mW之间,传输的范围也局限于100米到1公里之内。(5)防篡改性:传感节点是一种价格低廉、结构松散、开放的网络设备,攻击者一旦获取传感节点就很容易获得和修改存储在传感节点中的密钥信息以及程序代码等。

  另外,大多数传感器网络在进行部署前,其网络拓扑是无法预知的,同时部署后,整个网络拓扑、传感节点在网络中的角色也是经常变化的,因而不像有线网、大部分无线网络那样对网络设备进行完全配置,对传感节点进行预配置的范围是有限的,很多网络参数、密钥等都是传感节点在部署后进行协商后形成的。

  根据以上无线传感器特点分析可知,无线传感器网络易于遭受传感节点的物理操纵、传感信息的窃听、拒绝服务攻击、私有信息的泄露等多种威胁和攻击。下面将根据WSN的特点,对WSN所面临的潜在安全威胁进行分类描述与对策探讨。

  3.威胁分析与对策

  3.1传感节点的物理操纵

  未来的传感器网络一般有成百上千个传感节点,很难对每个节点进行监控和保护,因而每个节点都是一个潜在的攻击点,都能被攻击者进行物理和逻辑攻击。另外,传感器通常部署在无人维护的环境当中,这更加方便了攻击者捕获传感节点。当捕获了传感节点后,攻击者就可以通过编程接口(JTAG接口),修改或获取传感节点中的信息或代码,根据文献[3]分析,攻击者可利用简单的工具(计算机、UISP自由软件)在不到一分钟的时间内就可以把EEPROM、Flash和SRAM中的所有信息传输到计算机中,通过汇编软件,可很方便地把获取的信息转换成汇编文件格式,从而分析出传感节点所存储的程序代码、路由协议及密钥等机密信息,同时还可以修改程序代码,并加载到传感节点中。

  很显然,目前通用的传感节点具有很大的安全漏洞,攻击者通过此漏洞,可方便地获取传感节点中的机密信息、修改传感节点中的程序代码,如使得传感节点具有多个身份ID,从而以多个身份在传感器网络中进行通信,另外,攻击还可以通过获取存储在传感节点中的密钥、代码等信息进行,从而伪造或伪装成合法节点加入到传感网络中。一旦控制了传感器网络中的一部分节点后,攻击者就可以发动很多种攻击,如监听传感器网络中传输的信息,向传感器网络中发布假的路由信息或传送假的传感信息、进行拒绝服务攻击等。

  对策:由于传感节点容易被物理操纵是传感器网络不可回避的安全问题,必须通过其它的技术方案来提高传感器网络的安全性能。如在通信前进行节点与节点的身份认证;设计新的密钥协商方案,使得即使有一小部分节点被操纵后,攻击者也不能或很难从获取的节点信息推导出其它节点的密钥信息等。另外,还可以通过对传感节点软件的合法性进行认证等措施来提高节点本身的安全性能。

  3.2信息窃听

  根据无线传播和网络部署特点,攻击者很容易通过节点间的传输而获得敏感或者私有的信息,如:在通过无线传感器网络监控室内温度和灯光的场景中,部署在室外的无线接收器可以获取室内传感器发送过来的温度和灯光信息;同样攻击者通过监听室内和室外节点间信息的传输,也可以获知室内信息,从而揭露出房屋主人的生活习性。

  对策:对传输信息加密可以解决窃听问题,但需要一个灵活、强健的密钥交换和管理方案,密钥管理方案必须容易部署而且适合传感节点资源有限的特点,另外,密钥管理方案还必须保证当部分节点被操纵后(这样,攻击者就可以获取存储在这个节点中的生成会话密钥的信息),不会破坏整个网络的安全性。由于传感节点的内存资源有限,使得在传感器网络中实现大多数节点间端到端安全不切实际。然而在传感器网络中可以实现跳-跳之间的信息的加密,这样传感节点只要与邻居节点共享密钥就可以了。在这种情况下,即使攻击者捕获了一个通信节点,也只是影响相邻节点间的安全。但当攻击者通过操纵节点发送虚假路由消息,就会影响整个网络的路由拓扑。解决这种问题的办法是具有鲁棒性的路由协议,另外一种方法是多路径路由,通过多个路径传输部分信息,并在目的地进行重组。

  3.3私有性问题

  传感器网络是用于收集信息作为主要目的的,攻击者可以通过窃听、加入伪造的非法节点等方式获取这些敏感信息,如果攻击者知道怎样从多路信息中获取有限信息的相关算法,那么攻击者就可以通过大量获取的信息导出有效信息。一般传感器中的私有性问题,并不是通过传感器网络去获取不大可能收集到的信息,而是攻击者通过远程监听WSN,从而获得大量的信息,并根据特定算法分析出其中的私有性问题。因此攻击者并不需要物理接触传感节点,是一种低风险、匿名的获得私有信息方式。远程监听还可以使单个攻击者同时获取多个节点的传输的信息。

  对策:保证网络中的传感信息只有可信实体才可以访问是保证私有性问题的方法,这可通过数据加密和访问控制来实现;另外一种方法是限制网络所发送信息的粒度,因为信息越详细,越有可能泄露私有性,比如,一个簇节点可以通过对从相邻节点接收到的大量信息进行汇集处理,并只传送处理结果,从而达到数据匿名化。

  3.4拒绝服务攻击(DOS)

  DOS攻击主要用于破坏网络的可用性,减少、降低执行网络或系统执行某一期望功能能力的任何事件。如试图中断、颠覆或毁坏传感网络,另外还包括硬件失败、软件bug、资源耗尽、环境条件等[4]。这里我们主要考虑协议和设计层面的漏洞。确定一个错误或一系列错误是否是有意DOS攻击造成的,是很困难的,特别是在大规模的网络中,因为此时传感网络本身就具有比较高的单个节点失效率。

  DOS攻击可以发生在物理层,如信道阻塞,这可能包括在网络中恶意干扰网络中协议的传送或者物理损害传感节点。攻击者还可以发起快速消耗传感节点能量的攻击,比如,向目标节点连续发送大量无用信息,目标节点就会消耗能量处理这些信息,并把这些信息传送给其它节点。如果攻击者捕获了传感节点,那么他还可以伪造或伪装成合法节点发起这些DOS攻击,比如,它可以产生循环路由,从而耗尽这个循环中节点的能量。防御DOS攻击的方法没有一个固定的方法,它随着攻击者攻击方法的不同而不同。一些跳频和扩频技术可以用来减轻网络堵塞问题。恰当的认证可以防止在网络中插入无用信息,然而,这些协议必须十分有效,否则它也会被用来当作DOS攻击的手段。比如,使用基于非对称密码机制的数字签名可以用来进行信息认证,但是创建和验证签名是一个计算速度慢、能量消耗大的计算,攻击者可以在网络中引入大量的这种信息,就会有效地实施DOS攻击。

  4.总结

  安全是一个好的传感网络设计中的关键问题,没有足够的保护机密性、私有性、完整性以及防御DOS和其它攻击的措施,传感网络就不能得到广泛的应用,它只能在有限的、受控的环境中得到实施,这会严重影响传感网络的应用前景。另外,在考虑传感网络安全问题和选择对应安全机制的时候,必须在协议和软件的设计阶段就根据网络特点、应用场合等综合进行设计,试图在事后增加系统的安全功能通常被证明为不成功或功能较弱的。

维库电子通,电子知识,一查百通!

已收录词条48243