您好,欢迎来到维库电子市场网 登录 | 免费注册

伺服马达
阅读:9435时间:2010-10-12 15:10:52

  在伺服系统中控制机械元件运转的发动机.是一种补助马达间接变速装置。伺服电机,可使控制速度,位置精度非常准确。将电压信号转化为转矩和转速以驱动控制对象。

伺服电机和步进电机的性能比较

  步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

  一、控制精度不同

  两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如三洋公司(SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

  交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以三洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。

  二、低频特性不同

  步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

  交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。

  三、矩频特性不同

  步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。   四、过载能力不同

  步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以山洋交流伺服系统为例,它具有速度过载和转矩过载能力。其转矩为额定转矩的二到三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

  五、运行性能不同

  步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

  六、速度响应性能不同

  步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以山洋400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。

  综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

伺服电机的选型计算方法

  一、转速和编码器分辨率的确认。

  二、电机轴上负载力矩的折算和加减速力矩的计算。

  三、计算负载惯量,惯量的匹配,安川伺服电机为例,部分产品惯量匹配可达50倍,但实际越小越好,这样对精度和响应速度好。

  四、再生电阻的计算和选择,对于伺服,一般2kw以上,要外配置。

  五、电缆选择,编码器电缆双绞屏蔽的,对于安川伺服等日系产品值编码器是6芯,增量式是4芯。

如何将伺服电机改成连续转动

  将伺服电机改成连续转动

  任何伺服电机都可以改成双向变速电机。通常来说控制电机的速度和方向是需要一个电机驱动芯片以及其他一些元件的,而伺服电机上这些元件已经都具备了。改装伺服电机是最常见且最廉价的,获取机器人里用的数字控制变速器的方法,这样就得到一个连续转动的伺服电机。这个改动,部分是机械的,部分是电气的。电气的改动部分是将电位器改成两个同阻值的固定电阻,机械的改动部分是将阻止电机全方位转动的限位装置去掉。

  首先拆开伺服电机。HTX500伺服电机壳由三块塑料卡接而成,我们可以用小的一字螺丝刀或者类似的薄片将其撬开。从顶上将齿轮拉开,然后从底下小心地将伺服电机的控制电路板拉出来(见图I)。里面的机械限位有两个,用尖嘴钳弯折可以将转动轴旁边的金属限位去除,用斜向切割器可以将顶壳上的塑料限位去除(见图J)。用两个加起来5kΩ左右的固定电阻来替代5kΩ的电位器,两个2.2kΩ的电阻就行。将电位器上的三根线解焊下来,再将两个电阻如图K所示焊上去。用绝缘胶带或是热缩管将这个新组件包好(见图L),然后将这些电路都塞回到伺服电机壳子里,再把壳子装好。改装完成了,现在可以校准一下这个连续转动伺服电机,看看起点在哪里。如果两个电阻阻值精确相等的话,送到伺服电机是90°角的时候电机能停下来。你的电机可能会有一点偏差,可以试试用先前的程序做实验看看哪个角度能将电机停住。记住这个值,因为每个伺服电机都不一样。

  两个连续转动伺服电机完成一个画图机器人

  用两个连续转动伺服电机我们就能完成一个画图机器人。采用两个伺服电机、一个9V电池、一个小面包板、一块Adafruit Boarduino控制板(Arduino 板的克隆版)、一个Sharpie记号笔还有几个塑料转盘。这个电路和全景摄像头的一样,而且所有的部件也是用热熔胶粘在一起的。任何直径在2~7cm的转盘都可以做轮子,比如说塑料的螺丝顶盖。想加强引力还可以用胶带将轮子边缘包起来。伺服电机的设定和前面一样,代码里要用上刚才实验得到的电机起点位置的变量(你的电机起点位置可能不一样)。代码的逻辑让一个电机朝某个方向移动一段时间,然后换到另一个电机。现在大功告成,你可以去试试你的机器人了(见图M)。

伺服电机安装使用注意事项

  一、伺服电机油和水的保护

  A:伺服电机可以用在会受水或油滴侵袭的场所,但是它不是全防水或防油的。因此, 伺服电机不应当放置或使用在水中或油侵的环境中。

  B:如果伺服电机连接到一个减速齿轮,使用伺服电机时应当加油封,以防止减速齿轮的油进入伺服电机。

  C:伺服电机的电缆不要浸没在油或水中。

  二、伺服电机电缆→减轻应力

  A:确保电缆不因外部弯曲力或自身重量而受到力矩或垂直负荷,尤其是在电缆出口处或连接处。

  B:在伺服电机移动的情况下,应把电缆(就是随电机配置的那根)牢固地固定到一个静止的部分(相对电机),并且应当用一个装在电缆支座里的附加电缆来延长它,这样弯曲应力可以减到最小。

  C:电缆的弯头半径做到尽可能大。

  三、伺服电机允许的轴端负载

  A:确保在安装和运转时加到伺服电机轴上的径向和轴向负载控制在每种型号的规定值以内。

  B:在安装一个刚性联轴器时要格外小心,特别是过度的弯曲负载可能导致轴端和轴承的损坏或磨损。

  C:用柔性联轴器,以便使径向负载低于允许值,此物是专为高机械强度的伺服电机设计的。

  D:关于允许轴负载,请参阅“允许的轴负荷表”(使用说明书)。

  四、伺服电机安装注意

  A:在安装/拆卸耦合部件到伺服电机轴端时,不要用锤子直接敲打轴端。(锤子直接敲打轴端,伺服电机轴另一端的编码器要被敲坏)。

  B:竭力使轴端对齐到状态(对不好可能导致振动或轴承损坏)。

步进电机和交流伺服电机性能比较

  步进电机是一种离散运动的装置,它和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

  一、控制精度不同

  两相混合式步进电机步距角一般为3.6°、 1.8°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机步距角更小。如四通公司生产的一种用于慢走丝机床的步进电机,其步距角为0.09°;德国百格拉公司(BERGER LAHR)生产的三相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

  交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以松下全数字式交流伺服电机为例,对于带标准2500线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/10000=0.036°。对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。

  二、低频特性不同

  步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。

  交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。

  三、矩频特性不同

  步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

  四、过载能力不同

  步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以松下交流伺服系统为例,它具有速度过载和转矩过载能力。其转矩为额定转矩的三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。

  五、运行性能不同

  步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。

  六、速度响应性能不同

  步进电机从静止加速到工作转速(一般为每分钟几百转)需要200~400毫秒。交流伺服系统的加速性能较好,以松下MSMA 400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。

  综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。

维库电子通,电子知识,一查百通!

已收录词条45587