您好,欢迎来到维库电子市场网 登录 | 免费注册

半导体材料
阅读:32924时间:2011-09-14 14:48:16

  半导体材料是电导率在10~10欧/厘米之间的材料。在一般情况下,半导体电导率随温度的升高而增大,这与金属导体恰好相反。凡具有上述两种特征的材料都可归入半导体材料的范围。半导体材料是最重要最有影响的功能材料之一,它在微电子领域具有独占的地位,同时又是光电子领域的主要材料。

发展历程

  半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。宰二十世纪初,就曾出现过点接触矿石检波器。1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。

特性

  1、电阻率

  半导体材料是一种具有特殊导电性能的功能材料,其电阻率处于导体电阻率( 0.00001Ω.cm以下)和绝缘体电阻率(10000000000Ω.cm)之间。例如纯硅(Si)材料的电阻率约为100000Ω.cm 。半导体材料的电阻率对其杂质含量、环境温度、以及光照、电场、磁场、压力等外界条件有非常高的灵敏性。

  2、能带

  在孤立原子中的电子分别处在具有一定能量的电子轨道上。而在晶体中,原先在不同孤立原子中但具有相同能级的许多电子形成晶体时,由于量子效应,即 Pauli 原理的限制不能有两个电子处于相同的状态,它们的能量必定彼此错开,各自处在一个能量略有差异的一组子能级上,形成能带。根据电子的能量分布,在某些能量范围内是不许有电子存在的称之为禁带,即能带之间的间隙。由价电子填充的能带,称之为价带或满带。价带以上的能带基本上是空的,其中的允许电子存在的能带称为导带。根据价带与导带的分布情况,可以获得金属、半导体和绝缘体。在一般情况下,半导体的导带底有少量电子,价带顶有少量空穴,半导体的导电就是依靠导带底的少量电子或价带顶的少量空穴。

  3、满带电子不导电

  当价带中存在一定的空穴和导带中存在一定量的电子时,半导体材料才能导电。即,半导体材料的导电行为取决于价带中的空穴和导带中的电子。

  4、直接带隙和间接带隙

  价带的电子可以通过热激发或光照等激发到导带中去。由光照激发价带的电子到导带而形成电子 — 空穴对的这个过程称为本征光吸收。

  在非竖直跃迁过程中,光子主要提供跃迁所需要的能量,而声子则主要提供所需要的动量。与竖直跃迁相比,非竖直跃迁是一个二级过程,发生的几率要小得多,我们把导带底和价带顶处于k空间不同点的半导体称为间接带隙半导体。 (在晶体材料中,声子的波长一般介于光子与电子波长之间) 。

  导带中的电子跃迁到价带空带能级而发射光子, 是上述光吸收的逆过程, 称为电子 —— 空穴对复合发光。

种类

  半导体材料按化学成分和内部结构,大 致可分为以下几类。

  1.元素半导体

  有锗、硅、硒、硼、碲、锑等。50 年代,锗在半导 体中占主导地位,但 锗半导体器件的耐高温和抗辐射性能较差,到 60 年代后期逐渐 被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大 功率器件。因此,硅已成为应用最多的一种增导体材料,目前的集成电路大多数是用 硅材料制造的。

  2.化合物半导体

  由两种或两种以上的元素化合而成的半导体材料。它 的种类很多,重要的有砷化镓、磷化锢、锑化锢、碳化硅、硫化镉及镓砷硅等。其中 砷化镓是制造微波器件和集成电的重要材料。碳化硅由于其抗辐射能力强、耐高温和 化学稳定性好,在航天技术领域有着广泛的应用。

  3.无定形半导体材料

  用作半导体 的玻璃是一种非晶体无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种。这类 材料具有良好的开关和记忆特性和很强的抗辐射能力,主要用来制造阈值开关、记忆 开关和固体显示器件。

  4.有机半导体材料

  已知的有机半导体材料有几十种,包括萘、 蒽、聚丙烯腈、酞菁和一些芳香族化合物等,目前尚未得到应用 。

制备

  不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨 片、抛光片、薄膜等。半导体材料的不同形态要求对应不同的加工工艺。常用的半导 体材料制备工艺有提纯、单晶的制备和薄膜外延生长。

  所有的半导体材料都需要对原料进行提纯,要求的纯度在 6 个“9”以上 ,达 11 个“9”以上。提纯的方法分两大类,一类是不改变材料的化学组成进行提纯,称为 物理提纯; 另一类是把元素先变成化合物进行提纯, 再将提纯后的化合物还原成元素, 称为化学提纯。物理提纯的方法有真空蒸发、区域精制、拉晶提纯等,使用最多的是 区域精制。化学提纯的主要方法有电解、络合、萃取、精馏等,使用最多的是精馏。 由于每一种方法都有一定的局限性,因此常使用几种提纯方法相结合的工艺流程以获 得合格的材料。

  绝大多数半导体器件是在单晶片或以单晶片为衬底的外延片上作出的。成批量的 半导体单晶都是用熔体生长法制成的。直拉法应用最广,80%的硅单晶、大部分锗单 晶和锑化铟单晶是用此法生产的,其中硅单晶的直径已达 300 毫米。在熔体中 通入磁场的直拉法称为磁控拉晶法,用此法已生产出高均匀性硅单晶。在坩埚熔体表 面加入液体覆盖剂称液封直拉法,用此法拉制砷化镓、磷化镓、磷化铟等分解压较大 的单晶。悬浮区熔法的熔体不与容器接触,用此法生长高纯硅单晶。水平区熔法用以 生产锗单晶。水平定向结晶法主要用于制备砷化镓单晶,而垂直定向结晶法用于制备 碲化镉、砷化镓。用各种方法生产的体单晶再经过晶体定向、滚磨、作参考面、切片、 磨片、倒角、抛光、腐蚀、清洗、检测、封装等全部或部分工序以提供相应的晶片。

  在单晶衬底上生长单晶薄膜称为外延。外延的方法有气相、液相、固相、分子束 外延等。工业生产使用的主要是化学气相外延,其次是液相外延。金属有机化合物气 相外延和分子束外延则用于制备量子阱及超晶格等微结构。非晶、微晶、多晶薄膜多 在玻璃、陶瓷、金属等衬底上用不同类型的化学气相沉积、磁控溅射等方法制成。

应用

  1、元素半导体材料

  硅在当前的应用相当广泛,他不仅是半导体集成电路,半导体器件和硅太阳能电池的基础材料,而且用半导体制作的电子器件和产品已经大范围的进入到人们的生活,人们的家用电器中所用到的电子器件80%以上与案件都离不开硅材料。锗是稀有元素,地壳中的含量较少,由于锗的特有性质,使得它的应用主要集中与制作各种二极管,三极管等。而以锗制作的其他钱江如探测器,也具有着许多的优点,广泛的应用于多个领域。

  2、有机半导体材料

  有机半导体材料具有热激活电导率,如萘蒽,聚丙烯和聚二乙烯苯以及碱金属和蒽的络合物,有机半导体材料可分为有机物,聚合物和给体受体络合物三类。有机半导体芯片等产品的生产能力差,但是拥有加工处理方便,结实耐用,成本低廉,耐磨耐用等特性。

  3、非晶半导体材料

  非晶半导体按键合力的性质分为共价键非晶半导体和离子键非晶半导体两类,可用液相快冷方法和真空蒸汽或溅射的方法制备。在工业上,非晶半导体材料主要用于制备像传感器,太阳能锂电池薄膜晶体管等非晶体半导体器件。

  4、化合物半导体材料

  化合物半导体材料种类繁多,按元素在周期表族来分类,分为三五族,二六族,四四族等。如今化合物半导体材料已经在太阳能电池,光电器件,超高速器件,微波等领域占据重要位置,且不同种类具有不同的应用。总之,半导体材料的发展迅速,应用广泛,随着时间的推移和技术的发展,半导体材料的应用将更加重要和关键,半导体技术和半导体材料的发展也将走向更高端的市场。

      更多精彩内容,请登录维库电子通(wiki.dzsc.com)

常见的现状及趋势

  1、硅材料

  从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

  从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smart cut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

  理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

  2、GaAs和InP单晶材料

  GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

  目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

  GaAs和InP单晶的发展趋势是:

  (1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

  (2)。提高材料的电学和光学微区均匀性。

  (3)。降低单晶的缺陷密度,特别是位错。

  (4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

  3、半导体超晶格、量子阱材料

  半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

  (1)Ⅲ-V族超晶格、量子阱材料。

  GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP  InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

  虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nm InGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

  为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K 5μm和250K 8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

  目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的Picogiga MBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

  (2)硅基应变异质结构材料。

  硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

  另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSi MODFET和MOSFET的截止频率已达200GHz,HBT振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

  4、宽带隙半导体材料

  宽带隙半导体材料主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,输出功率为0.5W.在微电子器件研制方面,GaN基FET的工作频率(fmax)已达140GHz,fT=67 GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256 GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

  以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6H SiC单晶与外延片,以及3英寸的4H SiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

  II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

  宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

  目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

  5、低维半导体材料

  实际上这里说的低维半导体材料就是纳米材料 ,之所以不愿意使用,主要是不想与现在热炒的所谓的纳米衬衣、纳米啤酒 瓶、纳米洗衣机等混为一谈、从本质上看,发展纳米科学技术的重要目的之一,就是人们能在原子、分子或者纳米的尺度水平上来控制和制造功能强大、性能优越的纳米电子、光电子器件和电路,纳米生物传感器件等,以造福人类。可以预料,纳米科学技术的发展和应用不仅将彻底改变人们的生产和生活方式,也必将改变社会政治格局和战争的对抗形式。这也是为什么人们对发展纳米半导体技术非常重视的原因。

  电子在块体材料里,在三个维度的方向上都可以自由运动。但当材料的特征尺寸在一个维度上比电子的平均自由程相比更小的时候,电子在这个方向上的运动会受到限制,电子的能量不再是连续的,而是量子化的,我们称这种材料为超晶格 、量子阱材料。量子线材料就是电子只能沿着量子线方向自由运动,另外两个方向上受到限制;量子点材料是指在材料三个维度上的尺寸都要比电子的平均自由程小,电子在三个方向上都不能自由运动,能量在三个方向上都是量子化的。

  由于上述的原因,电子的态密度函数也发生了变化,块体材料是抛物线,电子在这上面可以自由运动;如果是量子点材料,它的态密度函数就像是单个的分子、原子那样,完全是孤立的 函数分布,基于这个特点,可制造功能强大的量子器件。大规模集成电路的存储器是靠大量电子的充放电实现的。大量电子的流动需要消耗很多能量导致芯片发热,从而限制了集成度,如果采用单个或几个电子做成的存储器,不但集成度可以提高,而且功耗问题也可以解决。目前的激光器效率不高,因为激光器的波长随着温度变化,一般来说随着温度增高波长要红移,所以现在光纤通信用的激光器都要控制温度。如果能用量子点激光器代替现有的量子阱激光器,这些问题就可迎刃而解了。

  基于GaAs和InP基的超晶格、量子阱材料已经发展得很成熟,广泛地应用于光通信 、移动 通讯、微波通讯 的领域。量子级联激光器是一个单极器件,是近十多年才发展起来的一种新型中、远红外光源,在自由空间通信、红外对抗和遥控化学传感等方面有着重要应用前景。它对MBE制备工艺要求很高,整个器件结构几百到上千层,每层的厚度都要控制在零点几个纳米的精度,中国在此领域做出了国际先进水平的成果;又如多有源区带间量子隧穿输运和光耦合量子阱激光器 ,它具有量子效率高、功率大和光束质量好的特点,中国已有很好的研究基础;在量子点(线)材料和量子点激光器等研究方面也取得了令国际同行瞩目的成就。

战略地位

  上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

维库电子通,电子知识,一查百通!

已收录词条45426