您好,欢迎来到维库电子市场网 登录 | 免费注册

江山变压器
阅读:3881时间:2018-01-31 09:30:19

  变压器(biàn'ya'qì)(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁心(磁芯)。在电器设备和无线电路中,常用作升降电压、匹配阻抗,安全隔离等。在发电机中,不管是线圈运动通过磁场或磁场运动通过固定线圈,均能在线圈中感应电势,此两种情况,磁通的值均不变,但与线圈相交链的磁通数量却有变动,这是互感应的原理。变压器就是一种利用电磁互感应,变换电压,电流和阻抗的器件。变压器的功能主要有:电压变换;电流变换,阻抗变换;隔离;稳压(磁饱和变压器)等。

介绍

  变压器是利用电磁感应原理,从一个电路向另一个电路传递电能或传输信号的一种电器。是电能传递或作为信号传输的重要元件。
  变压器的功能主要有:电压变换;电流变换,阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁芯形状一般有E型和C型铁芯,XED型,ED型CD型。
  变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器试验变压器、转角变压器、大电流变压器、励磁变压器。
  变压器的最基本形式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。
  一般指连接交流电源的线圈称之为「一次线圈」(Primarycoil);而跨于此线圈的电压称之为「一次电压」。在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈间的「匝数比」所决定的。因此,变压器区分为升压与降压变压器两种。
  大部分的变压器均有固定的铁芯,其上绕有一次与二次的线圈。基于铁材的高导磁性,大部分磁通量局限在铁芯里,因此,两组线圈藉此可以获得相当高程度之磁耦合。在一些变压器中,线圈与铁芯二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。因此,变压器之匝数比,一般可作为变压器升压或降压的参考指标。由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附属物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,可以这样说,没有变压器,现代工业实无法达到目前发展的现状。
  电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。一般提供50Hz电力网络之电源均非常庞大,它可能是涵盖有半个洲地区那般大的容量。电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部分属放大电力者,但如与电力系统发电能力相比较,它仍然归属于小电力之范围。各种电子装备常用到变压器,理由是:提供各种电压阶层确保系统正常操作;提供系统中以不同电位操作部分得以电气隔离;对交流电流提供高阻抗,但对直流则提供低的阻抗;在不同的电位下,维持或修饰波形与频率响应。「阻抗」其中之一项重要概念,亦即电子学特性之一,其乃预设一种设备,即当电路组件阻抗系从一阶层改变到另外的一个阶层时,其间即使用到一种设备-变压器。
  变压器又有其做试验而用的,称之为试验变压器,分别可以分为充气式,油浸式,干式等试验变压器,是发电厂、供电局及科研单位等广大用户的用来做交流耐压试验的基本试验设备,通过了国家质量监督局的标准,用于对各种电气产品、电器元件、绝缘材料等进行规定电压下的绝缘强度试验。
  1.变压器——静止的电磁装置
  变压器可将一种电压的交流电能变换为同频率的另一种电压的交流电能
  变压器的主要部件是一个铁心和套在铁心上的两个绕组。
  变压器原理
  与电源相连的线圈,接收交流电能,称为一次绕组
  与负载相连的线圈,送出交流电能,称为二次绕组
  一次绕组的二次绕组的
  电压相量U1电压相量U2
  电流相量I1电流相量I2
  电动势相量E1电动势相量E2
  匝数N1匝数N2
  同时交链一次,二次绕组的磁通量的相量为φm。该磁通量称为主磁通。
  组成
  变压器组成部件包括器身(铁芯、绕组、绝缘、引线)、变压器油、油箱和冷却装置、调压装置、保护装置(吸湿器、安全气道、气体继电器、储油柜及测温装置等)和出线套管。
  变压器与变频器的区别
  变频器:通过它调整能够达到所需要的用电频率(50hz,60hz等),来满足我们对用电的特殊需要。变压器:一般为“降压器”,常见于小区附近或工厂附近,它的作用是将超高的电压降到我们居民正常用电电压,满足人们的日常用电。

原理

  变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。
  变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

结构

  1.铁芯
  铁芯是变压器中主要的磁路部分。通常由含硅量较高,厚度分别为0.35mm\0.3mm\0.27mm,
  表面涂有绝缘漆的热轧或冷轧硅钢片叠装而成
  铁芯分为铁芯柱和横片两部分,铁芯柱套有绕组;横片是闭合磁路之用。
  铁芯结构的基本形式有心式和壳式两种
  2.绕组
  绕组是变压器的电路部分,它是用双丝包绝缘扁线或漆包圆线绕成。变压器的基本原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理:当一次侧绕组上加上电压U1时,流过电流I1,在铁芯中就产生交变磁通O1,这些磁通称为主磁通,在它作用下,两侧绕组分别感应电势E1,E2,感应电势公式为:E=4.44fNØm
  式中:E--感应电势有效值
  f--频率
  N--匝数
  Øm--主磁通值
  由于二次绕组与一次绕组匝数不同,感应电势E1和E2大小也不同,当略去内阻抗压降后,电压U1和U2大小也就不同。
  当变压器二次侧空载时,一次侧仅流过主磁通的电流(I0),这个电流称为激磁电流。当二次侧加负载流过负载电流I2时,也在铁芯中产生磁通,力图改变主磁通,但一次电压不变时,主磁通是不变的,一次侧就要流过两部分电流,一部分为激磁电流I0,一部分为用来平衡I2,所以这部分电流随着I2变化而变化。当电流乘以匝数时,就是磁势。
  上述的平衡作用实质上是磁势平衡作用,变压器就是通过磁势平衡作用实现了一、二次侧的能量传递。

参数

  对不同类型的变压器都有相应的技术要求,可用相应的技术参数表示。如电源变压器的主要技术参数有:额定功率、额定电压和电压比、额定频率、工作温度等级、温升、电压调整率、绝缘性能和防潮性能,对于一般低频变压器的主要技述参数是:变压比、频率特性、非线性失真、磁屏蔽、静电屏蔽、效率等。
  A.电压比
  变压器两组线圈圈数分别为N1和N2,N1为初级,N2为次级。在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势.当N2>N1时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2<N1时,其感应电动势低于初级电压,这种变压器称为降变压器。初级次级电压和线圈圈数间具有下列关系:
  U1/U2=N1/N2
  式中n称为电压比(圈数比).当n<1时,则N1>N2,U1>U2,该变压器为降压变压器。反之则为升压变压器.
  另有电流之比I1/I2=N2/N1
  电功率P1=P2
  注意:上面的式子,只在理想变压器只有一个副线圈时成立。当有两个副线圈时,P1=P2+P3,U1/N1=U2/N2=U3/N3,电流则须利用电功率的关系式去求,有多个时,依此类推。
  B.变压器的效率
  在额定功率时,变压器的输出功率和输入功率的比值,叫做变压器的效率,即:
  η=(P2÷P1)x100%
  式中,η为变压器的效率;P1为输入功率,P2为输出功率。 当变压器的输出功率P2等于输入功率P1时,效率η等于100%,变压器将不产生任何损耗。但实际上这种变压器是没有的。变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损。
  铜损是指变压器线圈电阻所引起的损耗.当电流通过线圈电阻发热时,一部分电能就转变为热能而损耗。由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损。
  变压器的铁损包括两个方面:一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗。另一是涡流损耗,当变压器工作时,铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流。涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗。
  变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率就越小,效率也就越高。反之,功率越小,效率也就越低。
  C.变压器的功率
  变压器铁芯磁通和施加的电压有关。在电流中励磁电流不会随着负载的增加而增加。虽然负载增加铁芯不会饱和,将使线圈的电阻损耗增加,超过额定容量由于线圈产生的热量不能及时的散出,线圈会损坏,假如你用的线圈是由超导材料组成,电流增大不会引起发热,但变压器内部还有漏磁引起的阻抗,但电流增大,输出电压会下降,电流越大,输出电压越低,所以变压器输出功率不可能是无限的。假如你又说了,变压器没有阻抗,那么当变压器流过电流时会产生特别大电动力,很容易使变压器线圈损坏,虽然你有了一台功率无限的变压器但不能用。只能这样说,随着超导材料和铁芯材料的发展,相同体积或重量的变压器输出功率会增大,但不是无限大!
  原理
  图1是变压器的原理简体图,当一个正弦交流电压U1加在初级线圈两端时,导线中就有交变电流I1并产生交变磁通ф1,它沿着铁芯穿过初级线圈和次级线圈形成闭合的磁路。在次级线圈中感应出互感电势U2,同时ф1也会在初级线圈上感应出一个自感电势E1,E1的方向与所加电压U1方向相反而幅度相近,从而限制了I1的大小。为了保持磁通ф1的存在就需要有一定的电能消耗,并且变压器本身也有一定的损耗,尽管此时次级没接负载,初级线圈中仍有一定的电流,这个电流我们称为“空载电流”。 如果次级接上负载,次级线圈就产生电流I2,并因此而产生磁通ф2,ф2的方向与ф1相反,起了互相抵消的作用,使铁芯中总的磁通量有所减少,从而使初级自感电压E1减少,其结果使I1增大,可见初级电流与次级负载有密切关系。当次级负载电流加大时I1增加,ф1也增加,并且ф1增加部分正好补充了被ф2所抵消的那部分磁通,以保持铁芯里总磁通量不变。如果不考虑变压器的损耗,可以认为一个理想的变压器次级负载消耗的功率也就是初级从电源取得的电功率。变压器能根据需要通过改变次级线圈的圈数而改变次级电压,但是不能改变允许负载消耗的功率。
  检测
  一、中周变压器的检测。
  二、电源变压器的检测。
  主要组成部分
  变压器的主要部件有:
  (1)器身:包括铁心、绕组、绝缘部件及引线。
  (2)调压装置:即分接开关,分为无励磁调压和有载调压
  (3)油箱及冷却装置。
  (4)保护装置:包括储油柜、安全气道、吸湿器、气体继电器、净油器和测温装置等。
  (5)绝缘套管。

绝缘等级

  变压器的绝缘等级,并不是绝缘强度的概念,而是允许的温升的标准,即绝缘等级是指其所用绝缘材料的耐热等级,分A、E、B、F、H级。绝缘的温度等级分为A级E级B级F级H级。各绝缘等级具体允许温升标准如下:
  允许温度(℃)105120130155180
  绕组温升限值(K)607580100125
  性能参考温度(℃)8095100120145
  变压器的容量等级:30、50、63.80、100、125.160、200、250、315.400、500、630、800、1000、1250、1600、2000、2500、3150、4000、5000、6300、8000kVA

变压器损耗、材料

  损耗
  当变压器的初级绕组通电后,线圈所产生的磁通在铁芯流动,因为铁芯本身也是导体,在垂直于磁力线的平面上就会感应电势,这个电势在铁芯的断面上形成闭合回路并产生电流,好像p一个旋涡所以称为“涡流”。这个“涡流”使变压器的损耗增加,并且使变压器的铁芯发热变压器的温升增加。由“涡流”所产生的损耗我们称为“铁损”。另外要绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损”。所以变压器的温升主要由铁损和铜损产生的。
  由于变压器存在着铁损与铜损,所以它的输出功率永远小于输入功率,为此我们引入了一个效率的参数来对此进行描述,η=输出功率/输入功率。
  材料
  要绕制一个变压器我们必须对与变压器有关的材料要有一定的认识,为此这里我就介绍一下这方面的知识。
  1.铁芯材料
  变压器使用的铁芯材料是铁片中加入硅能降低钢片的导电性,增加电阻率,它可减少涡流,使其损耗减少。我们通常称为加了硅的钢片为硅钢片,变压器的质量所用的硅钢片的质量有很大的关系,硅钢片的质量通常用磁通密度B来表示,一般黑铁片的B值为6000-8000、低硅片为9000-11000,高硅片为12000-16000,
  2.绕制变压器通常用的材料
  漆包线,纱包线,丝包线纸包线,最常用的漆包线。对于导线的要求,是导电性能好,绝缘漆层有足够耐热性能,并且要有一定的耐腐蚀能力。一般情况下用QZ型号的高强度的聚脂漆包线。
  3.绝缘材料
  在绕制变压器中,线圈框架层间的隔离、绕阻间的隔离,均要使用绝缘材料,一般的变压器框架材料可用酚醛纸板制作,环氧板,或纸板。层间可用聚脂薄膜,电话纸,6520复合纸等作隔离,绕阻间可用黄腊布,或亚胺膜作隔离。
  4.浸渍材料
  变压器绕制好后,还要过一道工序,就是浸渍绝缘漆,它能增强变压器的机械强度、提高绝缘性能、延长使用寿命,一般情况下,可采用甲酚清漆作为浸渍材料或1032绝缘漆,树脂漆。

特点

  一般常用变压器的分类可归纳如下:
  (1)按相数分:
  (1)单相变压器:用于单相负荷和三相变压器组。
  (2)三相变压器:用于三相系统的升、降电压。
  (2)按冷却方式分:
  (1)干式变压器:依靠空气对流进行冷却,一般用于局部照明、电子线路等小容量变压器。
  (2)油浸式变压器:依靠油作冷却介质、如油浸自冷、油浸风冷、油浸水冷、强迫油循环等。
  (3)按用途分:
  (1)电力变压器:用于输配电系统的升、降电压。
  (2)仪用变压器:如电压互感器、电流互感器、用于测量仪表和继电保护装置。
  (3)试验变压器:能产生高压,对电气设备进行高压试验。
  (4)特种变压器:如电炉变压器、整流变压器、调整变压器等。
  (4)按绕组形式分:
  (1)双绕组变压器:用于连接电力系统中的两个电压等级。
  (2)三绕组变压器:一般用于电力系统区域变电站中,连接三个电压等级。
  (3)自耦变电器:用于连接不同电压的电力系统。也可做为普通的升压或降后变压器用。
  (5)按铁芯形式分:
  (1)芯式变压器:用于高压的电力变压器。
  (2)非晶合金变压器:非晶合金铁芯变压器是用新型导磁材料,空载电流下降约80%,是目前节能效果较理想的配电变压器,特别适用于农村电网和发展中地区等负载率较低的地方。
  (3)壳式变压器:用于大电流的特殊变压器,如电炉变压器、电焊变压器;或用于电子仪器及电视、收音机等的电源变压器。

故障

  变压器的渗漏是变压器故障的常见问题,特别是一些运行年限已久的变压器更为普遍,轻者污染设备外表影响美观,重者威胁设备安全运行甚至人员生命,变压器的渗漏包括进出空气(正常经吸湿器进入的空气除外和渗漏油。
  变压器的渗漏原因
  造成渗漏的原因主要有两个方面:一方面是在变压器设计及制造工艺过程中潜伏下来的;另一方面是由于变压器的安装和维护不当引起的。变压器主要渗漏部位经常出现在散热器接口、平面碟阀帽子、套管、瓷瓶、焊缝、砂眼、法兰等部位。
  1、进出空气
  进出空气是一种看不见的渗漏形式。例如套管头部、储油柜的隔膜、安全气道的玻璃、焊缝砂眼以及钢材夹砂等部位的进出空气都是看不见的。多年来,电力系统的主要恶性事故大多是绕组的烧伤事故和因变压器低压出口短路对器身的严重损坏。
  2、渗漏油的分类
  变压器的渗漏油可分为内漏和外漏两种,而外漏又可分为焊缝渗漏和密封面渗漏两种。
  (1)内漏。内漏最普遍的就是充油套管中的油以及有载调压装置切换开关油室的油向变压器本体渗漏。
  (2)外漏。外漏分为焊缝渗漏和密封面渗漏两种:
  焊缝渗漏。焊缝渗漏是由于钢板焊接部位存在砂眼所造成的。
  密封面渗漏。密封面渗漏情况比较复杂,要具体问题具体分析。在变压器大修或安装过程中应把防止密封面渗漏作为一项重要工作。
  变压器故障分析及解决方案
  1、焊接处渗漏油
  主要是焊接质量不良,存在虚焊,脱焊,焊缝中存在针孔,砂眼等缺陷,变压器出厂时因有焊药和油漆覆盖,运行后隐患便暴露出来,另外由于电磁振动会使焊接振裂,造成渗漏。对于已经出现渗漏现象的,首先找出渗漏点,不可遗漏。针对渗漏严重部位可采用扁铲或尖冲子等金属工具将渗漏点铆死,控制渗漏量后将治理表面清理干净,目前多采用高分子复合材料进行固化,固化后即可达到长期治理渗漏的目的。
  2、密封件渗漏油
  密封不良原因,通常箱沿与箱盖的密封是采用耐油橡胶棒或橡胶垫密封的,如果其接头处处理不好会造成渗漏油故障,有的是用塑料带绑扎,有的直接将两个端头压在一起,由于安装时滚动,接口不能被压牢,起不到密封作用,仍是渗漏油。可用福世蓝材料进行粘接,使接头形成整体,渗漏油现象得到很大的控制;若操作方便,也可以同时将金属壳体进行粘接,达到渗漏治理目的。
  3、法兰连接处渗漏油
  法兰表面不平,紧固螺栓松动,安装工艺不正确,使螺栓紧固不好,而造成渗漏油。先将松动的螺栓进行紧固后,对法兰实施密封处理,并针对可能渗漏的螺栓也进行处理,达到完全治理目的。对松动的螺栓进行紧固,必须严格按照操作工艺进行操作。
  4、螺栓或管子螺纹渗漏油
  出厂时加工粗糙,密封不良,变压器密封一段时间后便产生渗漏油故障。采用高分子材料将螺栓进行密封处理,达到治理渗漏的目的。另一种办法是将螺栓(螺母)旋出,表面涂抹福世蓝脱模剂后,再在表面涂抹材料后进行紧固,固化后即可达到治理目的。
  5、铸铁件渗漏油
  渗漏油主要原因是铸铁件有砂眼及裂纹所致。针对裂纹渗漏,钻止裂孔是消除应力避免延伸的方法。治理时可根据裂纹的情况,在漏点上打入铅丝或用手锤铆死。然后用丙酮将渗漏点清洗干净,用材料进行密封。②铸造砂眼可直接用材料进行密封。
  6、散热器渗漏油
  散热器的散热管通常是用有缝钢管压扁后经冲压制成在散热管弯曲部分和焊接部分常产生渗漏油,这是因为冲压散热管时,管的外壁受张力,其内壁受压力,存在残余应力所致。将散热器上下平板阀门(蝶阀)关闭,使散热器中油与箱体内油隔断,降低压力及渗漏量。确定渗漏部位后进行适当的表面处理,然后采用福世蓝材料进行密封治理。
  7、瓷瓶及玻璃油标渗漏油
  通常是因为安装不当或密封失效所制。高分子复合材料可以很好的将金属、陶瓷、玻璃等材质进行粘接,从而达到渗漏油的根本治理。

维库电子通,电子知识,一查百通!

已收录词条44954